<- read_csv("data/winter2012/polite.csv") polite
33 Regression models: interactions
<- brm(
f0_bm_int ~ gender + attitude + gender:attitude,
f0mn family = gaussian,
data = polite,
cores = 4,
seed = 7123,
file = "cache/ch-regression-interaction_f0_bm_int"
)
summary(f0_bm_int)
Family: gaussian
Links: mu = identity; sigma = identity
Formula: f0mn ~ gender + attitude + gender:attitude
Data: polite (Number of observations: 212)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 256.56 5.20 246.38 267.27 1.00 2632 2950
genderM -119.38 7.66 -134.08 -104.50 1.00 2532 2665
attitudepol -17.48 7.28 -31.76 -3.18 1.00 2573 2806
genderM:attitudepol 6.65 10.67 -14.20 27.47 1.00 2191 2693
Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 39.10 1.94 35.52 43.14 1.00 3834 2779
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
conditional_effects(f0_bm_int, "gender:attitude")
<- as_draws_df(f0_bm_int) f0_bm_int_draws
<- f0_bm_int_draws |>
f0_bm_int_draws mutate(
f_inf = b_Intercept,
f_pol = b_Intercept + b_attitudepol,
m_inf = b_Intercept + b_genderM,
m_pol = b_Intercept + b_genderM + b_attitudepol + `b_genderM:attitudepol`
)
library(posterior)
This is posterior version 1.6.1
Attaching package: 'posterior'
The following objects are masked from 'package:stats':
mad, sd, var
The following objects are masked from 'package:base':
%in%, match
|>
f0_bm_int_draws mutate(
m_pol_inf = m_pol - m_inf
|>
) summarise(
mean_diff = mean(m_pol_inf), sd_diff = sd(m_pol_inf),
lo_diff = quantile2(m_pol_inf, probs = 0.025), hi_diff = quantile2(m_pol_inf, probs = 0.975)
|>
) round()