Quantitative Data Analysis for Linguists in R

Stefano Coretta

2025-08-13

Table of contents

Welcome!
Preface
Audience e e e
Justification and pedagogical background
Book structure
I Week 1
1 Research methods
1.1 Empirical research
1.2 Axesofresearch
1.3 Research objectives
2 Research context
2.1 Research questions
2.2 Research hypotheses Lo
2.3 Precision and testability L L oo
3 Quantitative data analysis
3.1 Quantitative data analysis Lo L
3.2 The computational workflow L oL
3.3 Numbers have no meaning oo
4 R basics
4.1 Why R? . . e
42 RvsRStudio
4.3 RStudio e
4.3.1 RStudio and Quarto projects L oo
4.3.2 A few important settings Lo oL
4.4 Rbasics e
44.1 Rasacalculator
4.4.2 Variables e
4.4.3 Functions e
4.4.4 String and logical vectors

gUs A D

10
12
12
14

17
18
18
18

21
23
24
24

4.5 Summary

R packages

5.1 Imstall packages

5.2 Attaching packages

5.3 Package documentationo oL oL
Week 2

Inference

6.1 Uncertainty and variability oo

6.2 What is statistics (and isn’t)?o

6.3 Many Analysts, One Data Set: subjectivity exposed

6.4 The “New Statistics”

6.5 Summary

R scripts

7.1 Createan Rscript e

7.2 Write code

7.3 Running scripts

7.4 Comments

7.5 Ensuring the script runs

Statistical variables

8.1 Estimandum, estimands and statistical variables
8.2 Types of variables
8.2.1 Numeric vs categorical variables
8.2.2 Continuous vs discrete variables L.
8.3 Operationalisation L L o

Read data in R

9.1 Tabulardata e e
9.1.1 Non-tabular data
9.1.2 .rdsfiles

9.2 Getthedata

9.3 Organising your files

9.4 Read .csvfiles e
9.4.1 Relative paths

9.5 Read Excel sheets

9.6 Import .rdsfiles L

10 Summary measures

10.1 Overview

46
46
48
49

52

53
95
59
61
61
64

65
65
67
67
68
69

71
71
72
73
74
75

77
7
79
79
79
81
81
83
85
85

87

11

12

13

14

10.2 Measures of central tendency L oo 89

10.2.1 Mean o e e e e 89
10.2.2 Median e 90
10.2.3 Mode e 91

10.3 Measures of dispersion 92
10.3.1 Minimum and maximum e e 92
10.3.2 Range 93
10.3.3 Standard deviation 93

10.4 Summary table of summary measureso 94
Summarise data 95
11.1 Summarise with summarise() L oo 95
11.2 NA: Not Available 98
11.3 Grouping data with group_by () 99
11.3.1 What the pipel? 101

11.4 Counting observations with count() 102
Week 3 106
Transform data 107
12.1 Filter Tows o o e e e e e e e e 107
12.1.1 Logical operators L 108
12.1.2 The filter() function 110
12.1.3 The %in% operator 112

12.2 Mutate columns e e 113
Quarto 119
13.1 Code... and text! 119
13.2 Formatting texto 120
13.3 Create a .gqmd file 120
13.3.1 Partsof a Quarto file Lo o 123
13.3.2 Working directoryo 126

134 Howtoadd and runcode 127
13.5 Render Quarto filesto HTML 131
13.6 Render Quarto filesto PDF 132
13.7 Summary 136
Visualisation principles 137
14.1 Good data visualisation 138
14.2 Information is (not) reliable o L 138
14.3 Patterns are (not) noticeable Lo oL 140
14.4 Aesthetics (should not) get in the way 142

14.5 Does (not) enable
14.6 Practical tips . .

15 Plotting

exploration

15.0.1 Base R plotting function
15.1 Your first ggplot2 ploto
15.1.1 Let’s add geometries o
15.1.2 Function arguments Lo
15.2 Working with aesthetics oo o
15.2.1 colour aesthetic
15.2.2 alpha aesthetic oo

15.3 Labels
15.4 Summary

16 More plotting
16.1 Bar charts
16.2 Stacked bar charts
16.3 Filled stacked bar

charts

16.4 Faceting and panels Lo

16.5 Summary

17 Research cycle

17.1 Researcher’s degrees of freedom L.
17.2 Questionable Research Practices

IV Week 4

18 Probability distribution
18.1 Probabilities . . .

S

18.2 Probability distributionso
18.3 Probability mass and density functions L 0oL

18.4 Density plots . .

19 Working with distributions
19.1 The Gaussian distribution o oo
19.2 Cumulative distribution function (CDF)

19.3 Intervals
19.3.1 Quartiles
19.3.2 Percentiles

20 Bayesian inference

171
171
173

177

178
178
179
181
182

187
187
190
194
197
199

202

21 Gaussian models 208

21.1 Gaussian models 210
22 Fitting Gaussian models with brms 215
22.1 Posterior probability distributions o0 219
22.2 Plotting the posterior distributions L oL 223
22.3 Interpreting Credible Intervals 0. 224
224 Reporting L 226

V Week 5 228
23 Introduction to regression 229
23.1 A straight line 229
23.2 Back toschool 230
23.3 Add error e 234
24 Regression models 239
24.1 Vowel duration in Italian: thedata, 240
24.1.1 Themodel e 244

24.2 Interpret the model summary oL Lo Lo 246
24.3 Reporting 251
24.4 What’snext Lo 251
24.5 Summary e e e 252
25 Wrangling MCMC draws 253
25.1 MCMC what? e 253
25.2 Reproducible model fit Lo 254
25.3 Extract MCMC posterior draws e 255
25.4 Summary measures of the posterior draws L 0L 257
25.5 Plotting posterior draws 260

VI Week 6 263
26 Interim summary 264
VIl Week 7 265
27 Regression with categorical predictors 266
27.1 Revisiting reaction times L L 266
27.2 Treatment contrasts L L e 272
27.3 Model RTs by word type 275

28

29

27.4 Posterior predictions L Lo
27.5 Reporting L
27.6 Conclusion L
277 SUMMATY . . .« o v v et et e e e e e e e e

More than two levels

28.1 Mixean Basque VOT
28.2 Treatment contrasts with three levels
28.3 Posterior predictions L
28.4 Reporting L e

Frequentist statistics, the Null Ritual and p-values

29.1 Frequentist statistics, feuds and eugenics: a brief history

29.2 Null Hypothesis Significance Testing

29.3 The p-value

29.4 The Null Ritual e

29.5 Why prefer Bayesian inference? oo oL
29.5.1 Practical reasons
29.5.2 Conceptual reasons Lo

VIIIWeek 8

30

31

32

Binary outcomes: Bernoulli regression

30.1 Probability and log-odds Lo
30.2 Nicaraguan Sign Language single and multi-verb predicates
30.3 Plotting proportions, percentages and accuracy data
30.4 Bernoulli model of NSL predicates
30.5 Fit the Bernoulli model with brms
30.6 Reporting oL

Log-normal regression

31.1 Log-normal distributiono oo
31.2 Dealing with outliers L L
31.3 Modelling RTs with a log-normal regression
31.4 Interpreting log-normal regressions L L oL
315 Logsand ratios L e
31.6 Posterior predictions
31.7 Reporting L
31.8 SUMMATY e e e e e

Model diagnostics
32.1 R and Effective Sample Size oo o
32.2 Chaln mixing L

307

308
310
314
317
321
323
327

329
329
332
334
337
339
341
344
344

32.3 Possible solutions e 349

324 SUMMATY . . .« o ottt e e e e e e e e e 349

IX Week 9 350
33 Open Research 351
33.1 Reliability of results 351
33.2 Sharing research compendia oL L L oL 353
33.3 Pre-registration and Registered Reports 353
33.4 Version control systems L L oo 354
33.5 Licences and re-use L Lo 354
33.6 SUMMATY e e e 355

34 Regression models: multiple predictors 356
34.1 Two categorical predictors 356
34.2 Is the effect of attitude the same in both genders? 359

35 Regression models: interactions 361
References 364
Appendices 372
A Basic computer literacy 372
A.1 Files, folder and file extensions 372
A1l Filepaths 374

B Regression models cheat sheet 376
B.1 Step 0: Number of outcome variables 377
B.2 Step 1: Choose a distribution for your outcome variable 377
B.2.1 Continuous outcome variable 377

B.2.2 Discrete outcome variable oo oo 378

B.3 Step 2: Are there hierarchical groupings and/or repeated measures? 379
B.4 Step 3: Are there non-linear effects? 380
B.5 Step 0-bis: Number of outcome variables 380

Welcome!

Hello! Welcome to the Quantitative Data Analysis for Linguists in R textbook! This is
the textbook for the Quantitative Methods in Linguistics and English Language course at the
University of Edinburgh, but the textbook is open to all. Please, read the Preface to familiarise
yourself with the pedagogical background and structure of the book.

https://uoelel.github.io/qml/
preface.qmd

Preface

Audience

This textbook is specifically designed for the students taking the Quantitative Methods in
Linguistics and English Language (QML) course at the University of Edinburgh (UoE), but
you don’t have to be enrolled in the course to work through it. This book is an introduction
to quantitative methods and statistics in R for absolute beginners in the field of linguistics.
No prior familiarity with quantitative methods, statistics or knowledge of R is expected, just
a sense of adventure! Of course, the book can be helpful to researchers who have experience
with statistics but want to learn about a more modern approach to statistical analysis like
Bayesian statistics. Independent of your background, you will be exposed to several aspects
of quantitative data analysis and R skills that can be applied and extended to many cases of
data analysis in linguistics and related fields.

Justification and pedagogical background

This book is a response to the need for a structured textbook that can fit into a one semester
course and yet cover enough materials for an absolute beginner to be able to complete at
least basic quantitative analyses. While there are many good books out there, they tend
to focus on one aspect or the other, rather than covering all the necessary topics without
assuming some prior knowledge. Examples of excellent textbooks are R for Data Science
(R4DS, Wickham, Cetinkaya-Rundel, and Grolemund 2023) which covers the basics of R and
data processing and visualisation; Statistics for linguists: an introduction using R (Winter
2020), Statistical rethinking: a Bayesian course with examples in R and Stan (McElreath
2020), and Introduction to Bayesian Data Analysis for Cognitive Science (Nicenboim, Schad,
and Vasishth 2025), among many others, that focus on statistics with R. In fact, this textbook
has taken a lot of inspiration from those books, and I am forever grateful to the authors for
their fantastic work.

However, the QML course in the Linguistics and English Language department at UoE is the
only quantitative methods course in the department and the majority of students start as
absolute beginners. The course must cover basic principles of research methods, some aspects
of the philosophy of “science”, statistical concepts, and practical skills in R to run appropriate
quantitative analyses. It is a lot to cover and with 9 weeks of teaching available, only the

10

https://r4ds.hadley.nz

surface can be scratched, but scratched enough that by the end of the course you will feel
comfortable taking a further step outside your comfort zone. So this textbook is not in any
way meant to be exhaustive and it lives within the constraints of the specifics of the course
it is intended to serve. However, where relevant, pointers to other resources will be given so
that each reader can choose to focus on some aspects over others.

Another important point about this book is that, like the textbooks mentioned above, it
moves away from the “traditional” (perhaps old fashion) way of doing statistics and instead it
adopts a fresh take on quantitative data analysis which some have called the “New Statistics”
(Cumming 2013; Kruschke and Liddell 2018). All of you view will be familiar with research
papers in linguistics (whether you read them for a class or as part of your job as a researcher)
and you will surely have encountered the (in)famous p-value and statements like “statistically
significant”. These concepts belong to a particular way of doing statistics, called frequentist
statistics, which has become ritualised into a set of cookbook recipes that we started to blindly
follow (the “Null Ritual,” Gigerenzer 2004, 2018; Gigerenzer, Krauss, and Vitouch 2004).
While (good) frequentist statistics is not bad in itself, the so-called Null Ritual has done a lot
of damage, as you will learn in later chapters of this book. Because of these and other reasons,
this book adopts a Bayesian approach to statistics, where instead of chasing after “significant
p-values” we focus on a robust estimation of effects and patterns in the data. This is a bit of
an oversimplification, but it should give you enough sense for where the textbook comes from.
From a practical perspective, Bayesian statistics just works, even in those cases where the
traditional way of doing statistics fails for one reason or the other. By learning a few building
blocks of Bayesian statistics, you will be able to extend your skills to develop expertise in more
advanced techniques, all within a coherent framework. You will of course learn about p-values
and how (not) to interpret them, since a lot of current research is still carried out under the
Null Ritualistic approach.

Book structure

The book is structured according to the schedule of the QML course. Chapters are divided
into “weeks” and the course will cover those topics weekly. If you are reading this book without
being enrolled in the course, you are free to go through the chapters at your own pace! Not
however that the chapters are written so that there is a certain progression of topics, and later
chapters build on previous ones, so I recommend to start from the first chapter and if need
be maybe read through the first chapters quickly if they cover things you are already familiar
with, and start reading more intently when you hit a chapter that covers something new.

Each chapter has “badges” that indicate the major topic area of the chapter. While some
chapters focus on a specific area, others focus on more than one. These are the badges:

Research methods

is for chapters on research methods more generally, in-
cluding research practices and philosophy.

11

. gl - is for chapters that introduce statistical concepts without going

necessarily into the details of how to do that in R.

. m is for chapters that teach you how to use R to complete a particular task,
like reading or plotting data, using statistical models or transform data.

The book also uses different types of “call-out boxes” to present specific content. Here are
examples.

Definition or hint

A green box contains definitions or hints to solve exercises.

Exercise or activity

Orange boxes are for exercises or more general activities.

Quiz, examples and summaries

Blue boxes contain quizzes, examples or summaries. The title in the box will specify
what type of content.

R Note, Spotlight or solutions

Red boxes called “R Note” explain something about R or contain R tips that don’t quite
fit in the main text. Spotlight” boxes focus on statistical concepts, historical context or
philosophy. Red boxes called “Solutions” are solutions to the exercises.

The textbook will teach how to use R. R is a programming language, meaning that you will
have to write code which is executed and the results are returned to (as output in the R
Console, as plots, tables, so on). R code in-text will look like this: "this is R code", while
longer code chunks will look like this:

Sum two numbers!

a<-1+2
print(a)

Sometimes, when the R code is not that important, for example for certain plots, you will see
a little grey triangle next to Code and if you click on it the code will be shown, like in the
following example.

12

library(tidyverse)
library(glue)
mald <- readRDS("data/tucker2019/mald_1_1.rds")

rt_mean <- mean(mald$RT)

rt_sd <- sd(mald$RT)

rt_mean_text <- glue("mean: {round(rt_mean)} ms")
rt_sd_text <- glue("SD: {round(rt_sd)} ms")

x_int <- 2000

ggplot(data = tibble(x
geom_density(data
stat_function(fun

0:300), aes(x)) +

mald, aes(RT), colour
dnorm, n 101, args

scale_x_continuous(n.breaks = 5) +

geom_vline(xintercept

geom_rug(data = mald, aes(RT), alpha = 0.1) +
annotate (
"label", x = rt_mean + 1, y = 0.0015,
label = rt_mean_text,
£ill = "#1b7837", colour = "white"
) +
annotate (
"label", x = x_int, y = 0.0015,
label = rt_sd_text,
fill = "#8c510a", colour = "white"
) +
annotate (
"label", x = x_int, y = 0.001,
label = "theoretical sample\ndistribution",
fill = "#9970ab", colour = "white"
) +
annotate (
"label", x = x_int, y = 0.0003,
label = "empirical sample\ndistribution",
fill = "grey", colour = "white"
) +
labs(
title =

subtitle = glue("Gaussian distribution: mean

"grey", fill = "grey", alpha
list(rt_mean, rt_sd), colour

0.2) +
"#9970ab", linew:

rt_mean, colour = "#1b7837", linewidth = 1) +

"Theoretical sample distribution of reaction times",

{round(rt_mean)} ms, SD = {round(rt_sd)}"

x = "RT (ms)", y = "Relative probability (density)"

)

13

Relative probability (density)

0.0020 -

0.0015-

0.0010-

0.0005 -

0.0000 -

Theoretical sample distribution of reaction times
Gaussian distribution: mean = 1010 ms, SD = 318

mean: 1010 ms

SD: 318 ms

theoretical sample
distribution

.

! 11 Nl O B

0 1000

2000

RT (ms)

Figure 1

14

3000

Part |

Week 1

15

1 Research methods

archh methods

RESEARCH
METHODS

Digital
skills

Figure 1.1: A conceptual model of Research Methods (Hodotics).

RESEARCH METHODS are about the theory, methods and practice of conducting research. I
like to call the discipline that deals with research methods HopoOTICS, but it hasn’t caught on
yet. One way of categorising different aspects of research methods is represented in Figure 1.1.
You can think of research methods as the combination of:

16

e The research process: the process of conducting a research project, from determining
the research context to communicating results.

¢ Project management: the process of managing a research project, from project plan-
ning to writing-up.

o Digital skills: all research involves using computers (at least at some point if not
throughout) so that computer literacy and digital skills are nowadays a fundamental
aspect of research.

¢ Philosophy: all research is not performed in a vacuum and a lot of philosophical ques-
tions shape the entire research process.

o Ethics: all research is not performed in a social vacuum and ethical considerations are
a fundamental aspect of research.

Let’s zoom in on the RESEARCH PROCESS, as represented in Figure 1.2.

Data E%E

acquisition

Data E§
analysis NI il

Y Communication

Figure 1.2: A conceptual model of research process.

17

1.1

Context: the research context includes several aspects of the research process, including
the background (i.e. the previous literature and current knowledge) and the rationale of
the study (from the general topic to specific research questions/hypotheses).

Data acquisition: this is the process of gathering data to be used in the study. Data
acquisition covers many different types of processes, from experimental set-ups to corpus
queries.

Data analysis is the process of analysing the acquired data using qualitative, quantita-
tive or mixed methods. This part of the research process also includes interpreting the
output of such analysis.

Communication: finally, the last step in a research process cycle is to communicate
what was done and what was learned, both to the research community and to the wider
public.

Empirical research

Empirical research is one approach to research. This type of research focusses on learning
about the Universe through data and observation.

Empirical research

The word empirical is related to experience, and in the context of research it basically
means “based on experience (i.e. data and observation)”.
Learn more about the etymology of empirical here.

1.2

Axes of research

There are two main “axes” of empirical research types: exploratory vs corroboratory and

descriptive vs explanatory.

Exploratory vs corroboratory research

o Exploratory research is about exploring the data looking for patterns, associ-
ations, features and so on. This type of research is also known as “hypothesis
generating” because exploration can lead to the formulation of new hypotheses.

o Corroboratory research (aka as confirmatory research) is about checking expec-
tations against data. It is also known as “hypothesis testing” because it is about
testing hypotheses using data.

18

https://en.wiktionary.org/wiki/empirical#Etymology

DESCRIPTIVE

Describe
facts

Generate

Figure 1.3: Research axes.

19

EXPLORATORY
hypotheses
EXPLANATORY
Explain
facts
CORROBORATORY Corroborate
hypotheses

While there is still a lot of prejudice against exploratory research (typical sentiments are “it
doesn’t have theory”) it is an important way of doing research, as recognised by important
scholars. For example, Tukey (1980) stressed the importance of both approaches. The other
axis of research is the descriptive/explanatory axis.

Descriptive vs explanatory research

e Descriptive research is about describing facts through observation and collection
of data. In other words, descriptive research is about the what.

o Explanatory research is about explaining facts, i.e. understanding why they are
the way they are. In other words, explanatory research is about the why.

Similarly to the exploratory/corroboratory axis, there is still prejudice against descriptive
research (again, typical sentiments are that “it doesn’t have theory”). Within linguistics,
several scholars have shown that both descriptive and explanatory research are fundamental
and that both need conceptual and methodological theories to function. Indeed, Dryer (2008)
talks about descriptive theories and explanatory theories, granting both the same status.

1.3 Research objectives

Orthogonal to the two research axes from the previous section, we can classify research in-
stances based on their objectives. There are in principle three types of research objectives:
establishing facts, improving the fit of a framework to the facts, and comparing the fit of
different frameworks to the facts. Each has its merits and to improve our understanding of
the Universe we need all three, although there is nothing wrong with any one study focusing
just on one or two!

Establish facts

Research can establish facts and fill a gap in the knowledge of one or more
phenomena.

The aim of establishing facts is to accumulate evidence of particular events, features,
associations.

Examples:

e What are the uses of the Sanskrit verb gam ‘to go’?
o What is the duration of vowels in Mawayana (Arawakan)?
e Do people interact with Al as with other people?

20

Improve fit of framework to facts

Research can improve the fit of a specific framework to established facts.
Usually this is done to fine-tune a framework in light of new evidence but it also just
works when you want to test new expectations/hypotheses. When the facts do not match
the expectations, researchers modify the framework to accommodate the results.

In some cases, a framework can be totally abandoned in light of the facts, or a new one
could be developed.

Examples:

e Strong exemplar-based models preclude the possibility of abstract representations,
but certain categorisation tasks seem to involve abstract representations so these
must be included in exemplar-based models.

Compare fit of different frameworks to facts

This objective allows a researcher to compare two or more frameworks in light
of empirical results. The main prerequisite for this approach is that each framework
must have different expectations in relation to the phenomenon at hand.

When different frameworks entail different and exclusive hypotheses, one can test the
hypotheses with data: the results might help exclude certain hypotheses and keep others.
The frameworks that generate the excluded hypotheses have to be abandoned (unless
they can be modified to fit the new results, see above, while still being different enough
from other frameworks).

Examples:

e There are two possible models for the bilingual lexicon: Word association and
concept mediation. Which one better describes and explains the data?

e A strict feed-forward architecture of grammar does not allow phonetic details to
be sensitive to morphological structure, while some exemplar-based models allow
that.

Each of the three objectives are important in research, but note that in order to really advance
our understanding of things the third objective is fundamental: it is only by directly comparing
different frameworks that we can accumulate knowledge and weed out inaccurate explanations.
Every time you read about a study, ask yourself which of these objectives the study is setting
out to address.

Quiz 1

a. Select the appropriate research types for the following study: Previous research
showed that in several Euroasiatic languages, vowels followed by voiced consonants

21

tend to be longer than vowels followed by voiceless consonants. We investigate this
tendency in Quechua.

(A)
(B)
(©)

Descriptive, exploratory.
Descriptive, corroboratory.

Explanatory, corroboratory.

b. Which of the following studies aims to improve the fit of a framework to the data?
(Thanks to Andras Barany for suggesting the second example)

(A) We set out to test whether gestural timing is affected by foot-structure (as

per the foot-sensitivity hypothesis) or not (as per the segmental hypothesis).
In particular, we expect V-to-V timing to be stable within but not across feet
independent of intervening segments if the foot-sensitivity hypothesis holds,
while the timing should be affected by intervening segments both within and
across feet if the segmental hypothesis holds.

According to one hypothesis, there is one operation, Agree, which assigns
Case features to an argument (accusative to objects, in the example) and at
the same time gets the argument's person, number, and gender features. This
means that in an English sentence like John sees her, her gets accusative case
from a functional head (v) and v in turn gets the object's features — these
are not spelled out in English; there is never any object agreement. Other
languages are different in this respect: for example, in Hungarian, all direct
objects have accusative case and the verb can show object agreement but it
doesn't always do so. So there are a few theoretical options: either in all of
these languages Case and agreement happen but case is not always realised
(in English, case is sometimes realised but agreement never is; in Hungar-
ian, object case is always realised, but object agreement only sometimes
is), or Agree is actually not both Case and feature-agreement at the same time.

22

2 Research context

archh methods

Figure 1.2 shows the main steps that compose the research process. The first component is
the RESEARCH CONTEXT. Ellis and Levy (2008) discuss the research context and propose a
convenient break-down of the concept. Figure 2.1 is a schematic representation of different
aspects of the research context, from the most general to the most specific. An example of
each is also provided.

General Topic Processing of syntactic constructions
\ J
r N
Research We don't know if antipassives are more
costly to process than passives
problem yiop P
e v

.
Goal Investigate the cognitive cost of antipassive
and passive constructions

’
Research Are antipassives more costly to process

question than passive constructions?
\

- "
v Research Antipassives are as costly to process as
ege . passives since they both entail demotion of
Specific t hypothesis the subject)

Figure 2.1: Aspects of the research context, from general to specific (Ellis and Levy 2008).

The following sections treat research questions and research hypotheses in more detail.

23

2.1 Research questions

Research questions are questions whose answers directly address the research problem. They
take the form of actual questions. For example:

o What is the average speech rate of adolescents vs that of older adults?

e What happens to infants’ syntactic processing when they move from a monolingual to a
multilingual environment?

¢ Is the morphological complexity of languages spoken by larger populations different from
that of languages spoken by smaller populations?

Research questions are always necessary, independent of the type and objective of the research.
While there is an undue pressure on researcher to come up with “novel” research questions all
the time, it is perfectly fine to ask the same question multiple times.

2.2 Research hypotheses

Research questions can be further developed into research hypotheses. Research hypotheses
are statements (not questions) about the research problem. Hypotheses are never true nor
confirmed. We can only corroborate hypothesis, and it’s a long term process. The same
hypothesis has to be tested again and again, by multiple researchers in multiple contexts.
Research is not a one-off matter: knowledge can only be acquired slowly and with a lot of
effort. This idea has been beautifully synthesised into the “Slow Science” movement (Slow
Science Academy 2010): “[Researchers| need time to think. [Researchers] need time to read,
and time to fail. [Researchers] do not always know what it might be at right now.”

It is however perfectly fine to run a study with only research questions, without a research
hypothesis. As long as you clearly state whether you are talking about research questions or
research hypotheses and you don’t mix them up, you are fine.

2.3 Precision and testability

Solid research questions and hypotheses must have two main properties: they must be pre-
cise and testable. Precision is about the semantics of the words and phrases that make up
the question or hypothesis. For example, in the question “Is the morphological complexity
of languages spoken by larger populations different from that of languages spoken by smaller
populations?” we need to clearly define the following: morphological complexity, larger pop-
ulation, smaller population. What do we mean by “morphological complexity”? How do we
classify a population as large or small? For our research question to be a good research ques-
tion, it is important that we think very hard about what we mean by those words. This is
because depending on the specific meaning, we might obtain different outcomes, and to be sure

24

that the outcomes answer our specific research question we need to ensure that the question
itself and the words within it are well defined.

Secondly, research questions and hypotheses must be testable. Testability is about formulat-
ing research questions and hypotheses in a manner that is precise enough that it naturally
leads to a well-defined, specific study design. For example, the testability of the hypothesis
from Figure 2.1 would be compromised if we didn’t define “processing cost” precisely. For
example, processing cost could be related to the cognitive load of processing the sentences, or
to the number of “computational steps” needed to process the sentence, or to the ease of the
computational steps independent of their number. All of these aspects are strictly entangled
with the researcher’s assumptions and favourite linguistic framework or model of sentence pro-
cessing. Very often, “fast research” leads to hypotheses that look precise and testable on the
surface, but they fail to hit the mark upon greater scrutiny. Lack of precision and testability
undermines the robustness of research, as pointed out for example by Yarkoni (2022), Scheel
(2022), Scheel et al. (2020), and Devezer et al. (2021).

Precision and testability

Research questions and hypotheses should be precise (all the components should be
clearly defined) and testable (they clearly translate into a well-defined, specific study
design).

It is difficult to come by precise and testable hypotheses in linguistics just because our current
knowledge and understanding of Language and languages is limited. At best, we can normally
come up with vague hypotheses that state whether a difference between two conditions is
expected or not and, if we are lucky, the direction of the difference (i.e. “A is greater than
B” or vice versa). This state of affairs makes testing hypotheses using statistical methods
less straightforward, because of the non-straightforward mapping of (vague) hypotheses to
statistical models.

Spotlight: Falsificationism and falsifiability

Falsification is a procedure proposed by philosopher Karl Popper in relation to the
“problem of induction”. Induction is based on observations. Imagine you observe several
swans over a long time period in the United Kingdom and they are all white. You induce
that “all swans are white” and expect that to be true because you have never observed a
swan that was not white. However, black swans do exist (they are native of Australia and
New Zealand). You can see that it doesn’t matter how many white swans you observe in
the UK, you cannot be certain of the truthfulness of the statement “all swans are white”.
On the other hand, you only need see one single black swan to know that “all swans are
white” is false. In other words, a statement can only ever be shown to be false, never to
be true.

So, induction does not necessarily lead us to true statements, but falsification (observ-

25

ing even one case that makes the statement false) surely tells us which statements are
false. A falsifiable statement or hypothesis should prevent us from wrongly accepting
a false statement (but we can never know if it is true). John Spacey defines statement
falsificability in his blog post Seven examples of falsifiability:

A statement is falsifiable if it can be contradicted by an observation. If such
observation is impossible to make with current technology, falsifiability is not
achieved.

Some examples of falsifiable hypotheses:

o “Life only exists on Earth.” (it would be falsified by the observation of life some-
where else).

o “If there is a 1st person exclusive dual, then there is also a 1st person inclusive
dual.” [Universal 1871] (it would be falsified by the observation of languages with
a 1st person exclusive dual but without the inclusive alternative).

o “Infants start uttering full sentences only after their 12th month of life.” (it would
be falsified by the observation of infants uttering full sentences before their 12th
month of life).

The following are some examples of non-falsifiable hypotheses:

o “Life might exist outside of the Solar system.” (if we observe life outside the Solar
system or we don’t, the statement is still true, because of the might exist).

e “Languages with a 1st person inclusive dual can have a 1st person exclusive dual.”
(whether we observe a language with both 1st inclusive and exclusive dual or not,
the statement is still true, because of the can have.)

Falsification has become a tenet of a lot of modern quantitative research and has become
what could be regarded as falsificationism, but falsification is not the only approach to
quantitative research, as you have learned in this chapter: precision and testability are
two other equally valid criteria to follow when formulating hypotheses.

If you are interested in the philosophy behind research and statistics (commonly known
as “philosophy of science”) I recommend the following books (of increasing length and
depth): Okasha (2016), Dienes (2008), Rosenberg and Mclntyre (2020).

26

https://simplicable.com/new/falsifiability
https://typo.uni-konstanz.de/rara/universals-archive/1876/

3 Quantitative data analysis

Area Statistics

Data
analysis

0

Data analysis is anything that relates to analysing data, whether you collected it yourself or
you used pre-existing data.

There are two main approaches to data analysis:

« Quantitative data analysis is about learning from measured data. Data can be op-
erationalised in many different ways and these determine the type of analyses you can

apply.

27

¢ Qualitative data analysis is about learning from the features and characteristics of

the data.
Quantitative
analysis

RER

\J

Note that while it is common to talk about “quantitative vs qualitative data” in fact in most
cases data can be conceived as both quantitative and qualitative. It is really how we approach
the data that can be quantitative and/or qualitative. Moreover, these two approaches to data
analysis are not necessarily opposite to each other and there are some aspects of each in each
other. This will become clearer at the end of the course this textbook is written for.

This textbook focuses on quantitative data analysis. The rest of this chapter introduces
fundamental concepts of quantitative methods.

28

3.1 Quantitative data analysis

gl Quantitative
" analysis
| I

2pa

—
<___
-

2y
=

Quantitative analyses are usually comprised of three parts (these are not strictly distinct and
the boundaries are sometimes blurred):

e Summarise data with summary measures.
o Visualise data with plots.
e Model data with statistical models.

Summary measures are numbers that represent certain properties of the data: common
summary measures are the mean and the standard deviation. You will have frequently seen
these in published papers, either in text or as a table. You will learn about summary measures
in Chapter 10.

Plots, or graphs, are another common way to summarise data but they are based on visual
representation rather than single numbers. As the saying goes, “a picture is worth a thousand
words”. The aim of plots is to make explicit certain patterns in the data. Choosing and
designing plots that are effective and captivating is more of an art and you will learn the
basics and heuristics of good (and bad) plots in Chapter 14.

Statistical models are mathematical representations of patterns and relationship in data.
Statistical modelling is a powerful tool to learn from the data or to assess research hypotheses.
This textbook introduces you to a specific type of statistical models: regression models. These

29

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words
https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words

are highly flexible models that can be used with a variety of data types. You will start learning
about statistical models in Chapter 23.

3.2 The computational workflow

/v Visualize
Import — Tidy — Transform A) — Communicate
\ Model

Understand

Program

Figure 3.1: An overview of the computational workflow of quantitative data analysis from
Wickham, Cetinkaya-Rundel, and Grolemund (2023). CC BY-NC-ND 3.0

Another way to look at quantitative data analysis is through its computational workflow.
Figure 3.1 shows a typical workflow (Wickham, Cetinkaya-Rundel, and Grolemund 2023): you
import data, you tidy data up (i.e., you reshape the data so that it is easy to work with), you
transform it (i.e., you filter observations, change existing columns or create new ones, obtain
summary measures and join data together), you visualise it, you apply statistical models
and then you communicate what you learned. Very often, transforming, visualising and
modelling data is done iteratively, which is why these steps are shown in a loop in Figure 3.1,
and together they form the “understanding” part of the process. Through the transform-
visualise-model cycle, you understand things about the data. All of the steps in Figure 3.1 are
surrounded by a program: this is “computational programming”, in other words using the
computer to execute those steps.

You will learn the basics of how to import (aka read) data in Chapter 9, transform it in
Chapter 11 and Chapter 12, visualise it in Chapter 14 and Chapter 15, and model it from
Chapter 21 onwards. However, you will find bits from any of these steps in many other chapters,
so that you won’t have to learn everything at once.

3.3 Numbers have no meaning

Finally, I should mention a more philosophical aspect of quantitative data analysis. As said
above, both qualitative and quantitative approaches are valid and necessary to improve our
understanding of things. Crucially, even a very complex quantitative analysis will always
contain some qualitative aspects to it.

30

The numbers have no way of speaking for themselves. We speak for them. We imbue
them with meaning.
—Nate Silver, The Signal and the Noise

There’s a lot of wisdom in that quote. Numbers do not mean anything by themselves. We
need to interpret numbers, “imbue them with meaning”, based on many aspects of research
and beyond, including our own identity and positionality (Jafar 2018; Darwin Holmes 2020).
Gelman and Hennig (2017) highlight how we should move away from concepts of “objectivity”
and “subjectivity” as applied to statistics, and instead propose a broader collection of “virtues”.
They say: “Instead of debating over whether a given statistical method is subjective or objec-
tive (or normatively debating the relative merits of subjectivity and objectivity in statistical
practice), we can recognize attributes such as transparency and acknowledgement of multiple
perspectives as complementary” (Gelman and Hennig 2017, 973). The philosophical backdrop
of this textbook (and its author) very much embody this sentiment.

31

4 R basics

4.1 Why R?

R can be used to analyse all sorts of data, from tabular data (also known as “spreadsheets”),
textual data, map (GIS, Geographic Information System) data and even images.

--------- DATATABLE - TEXT -
l.
(J
IMAGES } ------------- GIS

This course will focus on the analysis of tabular data, since all of the techniques relevant to
this type of data also apply to the other types.

32

The R community is a very inclusive community and it’s easy to find help. There are
several groups that promote R in minority /minoritised groups, like R-Ladies, Africa R, and
Rainbow R just to mention a few.

Moreover, R is open source and free for anyone to use!

4.2 R vs RStudio

Beginners usually have trouble understanding the difference between R and RStudio. Let’s use
a car analogy. What makes the car go is the engine and you can control the engine through
the dashboard. You can think of R as an engine and RStudio as the dashboard.

33

https://www.r-consortium.org/all-projects/r-ladies
https://r4africa.org
https://rainbowr.netlify.app

RStudio: Dashboard

e R is a programming language.
o We use programming languages to interact with computers.

¢« You run commands written in a console and the related task is executed.

RStudio
e RStudio is an Integrated Development Environment or IDE.
o It helps you using R more efficiently.

e It has a graphical user interface or GUI

The next section will give you a tour of RStudio.

4.3 RStudio

Open RStudio on your computer and familiarise yourself with the different parts. When you
open RStudio, you can see the window is divided into 3 panels:

o Blue (left): the Console.
o Green (top right): the Environment tab.
o Purple (bottom right): the Files tab.

34

(O N J rstudio-tour - RStudio
9% & - [} A Go to file/function ~ Addins ~ E3 rstudio-tour ~
Console Terminal Background Jobs Environment History Connections Tutorial

@ R4.2.2 - ~/repos/rstudio-tour/ = % [i Import Dataset - (@ 108 MiB - « = List ~

R ~ | @, Global Environment ~

R version 4.2.2 (2022-10-31) -- "Innocent and Trusting"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20 (64-bit) Environment is empty

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more +information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser qinterface to help.
Type 'q()' to quit R.

Files Plots Packages Help Viewer Presentation
48 New Folder | +J] New Blank File - | %J] Delete By Rename | ¥¥ More -
B A Home > repos > rstudio-tour
Name size Modified

T .
B A Rhistory 360 B Sep 24, 2022, 8:24 PM
B M@ code
8 M data
8 @ rstudio-tour.Rproj Jan 18, 2023, 9:02 AM

The Console is where R commands can be executed. Think of this as the interface to R. Now,
try to run (execute) some R code in the console:

Exercise 1

o Write the following code in the Console:

sum(3, 1, 4)

o Press ENTER/RETURN on your keyboard. This will run (i.e. execute) the code. The
code sums the numbers 3, 1, and 4.

o The output of the code is shown below it, in the Console. (Never mind the [1] for
now).

The Environment tab lists the objects created with R, while in the Files tab you can
navigate folders on your computer to get to files and open them in the file Editor.

35

4.3.1 RStudio and Quarto projects

RStudio is an IDE (see above) which allows you to work efficiently with R, all in one place.
Note that files and data live in folders on your computer, outside of RStudio: do not think
of RStudio as an app that you can save files in. All the files that you see in the Files tab are
files on your computer and you can access them from the Finder or File Explorer as you would
with any other file.

In principle, you can open RStudio and then navigate to any folder or file on your computer.
However, there is a more efficient way of working with RStudio: RStudio and Quarto
Projects.

Projects

An RStudio Project is a folder on your computer that has an .Rproj file.
A Quarto Project is an RStudio Project with a _quarto.yml file.

You can create as many Quarto Projects as you wish, and I recommend to create one per
project (your dissertation, a research project, a course, etc...). We will create a Quarto Project
for this course (meaning, you will create a folder for the course which will be the Quarto
Project). You will have to use this project/folder throughout the semester.

To create a new Quarto Project, click on the button that looks like a transparent light blue
box with a plus, in the top-left corner of RStudio. A window like the one below will pop up.

36

[) [) rstudio-tour - RStudio

-9 -] A Go to file/function ~ Addins ~

Console Terminal

@ R4.2.1 - ~/repos/rstudio-tour/ #

R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platfor aarch64-apple-darwin20 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditi
Type 'license()' or 'licence()' for distribution details.

Natural language support but runniASUECECATEE

R is a collaborative project with mafRSECICREGIIES
Type 'contributors()' for more infor

'citation()' on how to cite R or R p
New Directory

3 rstudio-tour ~

Environment History ~ Connections Tutorial =0
& [[Import Dataset - € 150 MiB - | € List - C -
R - | @ Global Environment ~
Values

expenses

income

Start a project in a brand new working directory

Type 'demo()' for some demos, 'help(
'help.start()' for an HTML browser i

T ' Tt it R.
ype 'q()' to qui Existing Directory

Associate a project with an existing working directory

Version Control

Checkout a project from a version control repository

Click on New Directory then Quarto Project.

37

Help Viewer Presentation
*J Delete [y Rename ¥ -
dio-tour

Size Modified

Sep 21, 2022, 9:26 AN

Sep 21, 2022, 9:26 AN

New Project Wizard

Back Project Type

R New Project

! R Package

£

Shiny Application

Quarto Project

A
b

Quarto Website

) Quarto Blog

vV OV VvV VYV VYV

g Quarto Book

Cancel

4

Now, this will create a new folder (aka directory) on your computer and will make that a Quarto
Project (meaning, it will add a file with the .Rproj extension and a file called _quarto.yml
to the folder; the name of the .Rproj file will be the name of the project/folder).

Give a name to your new project, something like the name of the course and year
(e.g. qm1-2025).

Then you need to specify where to create this new folder/Project. Click on Browse.. and
navigate to the folder you want to create the new folder/Project in. This could be your
Documents folder, or the Desktop (we had issues with OneDrive in the past, so we recommend
you save the project outside of OneDrive).

When done, click on Create Project. RStudio will automatically open your new project.

38

qml - main - RStudio
A Go to fileffunction & - B - Addins -

nnections Build Git Tutorial

ap Render Website
Files Plots Packages Help Viewer Presentation

%8 New Folder 4] New Blank File - *Jj Delete [y Rename ¥ More -

New Project Wizard
Back Create Quarto Project

Directory name:
ami-2024
Create project as subdirectory of: Sep 13, 2024, 10:31 AM

~Jrepos Browse...

Engine: [Knitr v

Create a git repository
(D use renv with this project

Use visual markdown editor (2
Sep 13, 2024, 3:12 PM
Open in new session Create Project

Sep 1

Sep 12,

Sep 12, 21

Sep 16, 2024, 4:04 PM

IBPBRWDE

Important

When working through this textbook, always make sure you are in the Quarto Project
you just created for the course.

You know you are in an RStudio/Quarto Project because you can see the name of the
Project in the top-right corner of RStudio, next to the light blue cube icon.

If you see Project (none) in the top-right corner, that means you are not in a Quarto
Project.

An easy way to ensure that RStudio is opened from within a specific project, to open
RStudio go to the project folder in File Explorer or Finder and double click on the .Rproj
file. This will automatically open RStudio and set the project to that folder.

There are several ways of opening a Quarto Project:

¢ You can go to the Quarto Project folder in Finder or File Explorer and double click on
the .Rproj file.

e You can click on File > Open Project in the RStudio menu.

¢ You can click on the project name in the top-right corner of RStudio, which will bring
up a list of projects. Click on the desired project to open it.

39

Exercise 2
¢ Close RStudio.

e Now re-open RStudio by double-clicking on the .Rproj file of the project you
created.

4.3.2 A few important settings

Before moving on, there are a few important settings that you need to change.

[XN J rstudio-tour - RStudio
- -] A Go to file/function ~ Addins ~ B3 rstudio-tour ~

Console Terminal ¢ Environment History Connections Tutorial

@ R4.2.1 - ~/repos/rstudio-tour/ = & [® @& ImportDataset - € 94 MiB + & = List ~
R ~ B, Global Environment ~ (o}

R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid" Values

Copyright (C) 2022 The R Foundation for Statistical Computing

Platform: aarché4-apple-darwin20 (RIS

R is free software and comes witt
You are welcome to redistribute -
Type 'license()' or 'licence()' f Code

General Graphics | Advanced

R Sessions

Default working directory (when not in a project):
Natural language support but ru Console i Browse...

. . . . J Appearance /| Restore most recently opened project at startup
R is a collaborative project witt
Type 'contributors()' for more i Pane Layout

'citation()' on how to cite R or Workspace
Packages

Restore previously open source documents at startup

Restore .RData into workspace at startup
Type 'demo()' for some demos, 'he

'help.start()' for an HTML browse]
Type 'q()' to quit R.

Python History

(Rmd] "
. R Markdown Save workspace to .RData on exit: | Never
e~

Sweave | Always save history (even when not saving .RData)
1+2
[3 Remove duplicate entries in history
ang .

Spellin:
) % 4 il SPEing Other

[1] 8 ‘ Git/SVN +|Wrap around when navigating to previous/next tab Viewer Presentation

income < 1 - . v/ Automatically notify me of updates to RStudio Delete B Rename | & -
& Publishing -
Send automated crash reports to RStudio

inco 3 - Terminal Size Modified
[1] 700

@ Accessibility 498 Sep 21, 2022, 9:26 AN

Sep 21, 2022, 9:26 AN
Cancel

1. Open the RStudio preferences (Tools > Global options...).

2. Un-tick Restore .RData into workspace at startup.

e This mean that every time you start RStudio you are working with a clean En-
vironment. Not restoring the workspace ensures that the code you write is fully

40

reproducible. When this setting is enabled, your environment is saved in a hidden
file called .Rdata and loaded every time you start RStudio. This very frequently
leads to errors where the wrong variables/data is read or used by the code without
you noticing, so always make sure the setting is disabled.

3. Select Never in Save workspace to .RData on exit.

e Since we are not restoring the workspace at startup, we don’t need to save it.
Remember that as long as you save the code, you will not lose any of your work!
You will learn how to save code from next week.

4. Click OK to confirm the changes.

Quiz 1
True or false?

a. RStudio executes the code. TRUE / FALSE

b. R is a programming language. TRUE / FALSE

c. An IDE is necessary to run R. TRUE / FALSE

d. RStudio projects are folders with an .Rproj file. TRUE / FALSE

e. Quarto projects can’t be RStudio projects TRUE / FALSE

f. The project name is shown in the top-right corner of RStudio. TRUE / FALSE

g. I have disabled Restore .RData and Save workspace in the settings. TRUE /
FALSE

4.4 R basics

In this part of the tutorial you will learn the very basics of R. If you have prior experience
with programming, you should find all this familiar. If not, not to worry! Make sure you
understand the concepts highlighted in the green boxes and practise the related skills.

In the following sections, you should just run code directly in the R Console in RStudio, i.e. you
will type code in the Console and press ENTER to run it.

In later chapters, you will learn how to save your code in a script file or in Quarto documents,
so that you can keep track of which code you have run and make your work reproducible.

41

4.4.1 R as a calculator

Write this code 1 + 2 in the Console, then press ENTER/RETURN to run the code. Fantastic!
You should see that the answer of the addition has been printed in the Console, like this:

(1] 3

(Never mind the [1] for now).

Now, try some more operations (write each of the following in the Console and press ENTER).
Feel free to add your own operations to the mix!

67 - 13
2 x 4
268 / 43

You can also chain multiple operations.

6 +4 -1+ 2
4 x 2 + 3 % 2

Quiz 2
Are the following pairs of operations equivalent?

a.3%2/4=3 % (2 / 4 TRUE / FALSE

b. 10 * 2 + 5 x 0.2 = (10 * 2 + 5) * 0.2 TRUE / FALSE

Spotlight: Arithmetics
If you need a maths refresher, I recommend checking the following pages:

o https://www.mathsisfun.com/definitions/order-of-operations.html

o https://www.mathsisfun.com/algebra/introduction.html

4.4.2 Variables

Forget-me-not.

Most times, we want to store a certain value so that we can use it again later.

We can achieve this by creating variables.

42

https://www.mathsisfun.com/definitions/order-of-operations.html
https://www.mathsisfun.com/algebra/introduction.html

Variable

A variable holds one or more values and it’s stored in the computer memory for later
use.

You can create a variable by using the assignment operator <-.

Let’s assign the value 156 to the variable my_num.

my_num <- 156

Now, check the list of variables in the Environment tab of the top-right panel of RStudio. You
should see the my_num variable and its value there.

Now, you can just call the variable back when you need it! Write the following in the Console
and press ENTER.

my_num

[1] 156

A variable like my_num is also called a numeric vector: i.e. a vector that contains a number
(hence numeric).

Vector

A vector is an R object that contains one or more values of the same type.

A vector is a type of variable and a numeric vector is a type of vector. However, it’s fine
in most cases to use the word variable to mean vector (just note that a variable can also be
something else than a vector; you will learn about other R objects in later chapters).

Let’s now try some operations using variables.

income <- 1200
expenses <- 500
income - expenses

[1] 700

See? You can use operations with variables too! And you can also go all the way with
variables.

43

savings <- income - expenses

And check the value...

savings

[1] 700

Vectors can hold more than one item or value. Just use the combine c() function to create a
vector containing multiple values. The following are all numeric vectors.

one_i <- 6

Vector with 2 values
two_ i <- c(6, 8)

Vector with 3 values
three i <- c(6, 8, 42)

Check the list of variables in the Environment tab. You will see now that before the values of
two_i and three_i you get the vector type num for numeric. (If the vector has only one value,
you don’t see the type in the Enviroment list but it is still of a specific type.)

Numeric vector

A numeric vector is a vector that holds one or more numeric values.

Note that the following are the same:

one_i <- 6
one_i

(1] 6

one_ii <- c(6)
one_ii

(1] 6

Another important aspect of variables is that they are.. variable! Meaning that once you
assign a value to one variable, you can overwrite the value by assigning a new one to the same
variable.

44

my_num <- 88
my_num <- 63
my_num

[1] 63

Quiz 3

True or false?
a. A vector is a type of variable. TRUE / FALSE
b. Not all variables are vectors. TRUE / FALSE

c. A numeric vector can only hold numeric values. TRUE / FALSE

4.4.3 Functions

R cannot function without... functions.

Function

A function usually runs an operation on one or more specified arguments.

A function in R has the form function() where:

e function is the name of the function, like sum.
e () are round parentheses, inside of which you write arguments, separated by commas.

Let’s see an example:

sum(3, 5)

[1] 8
The sum() function sums the number listed as arguments. Above, the arguments are 3 and

5.

And of course arguments can be vectors!

45

my_nums <- c(3, 5, 7)

sum (my_nums)

[1] 15

mean (my_nums)

[11 5

Quiz 4
True or false?

a. Functions can take other functions as arguments. TRUE / FALSE
b. All function arguments must be specified. TRUE / FALSE

c. All functions need at least one argument. TRUE / FALSE

Hint

4c
The Sys.Date() function and other functions like it don’t take any arguments.

R Note: R vs Python

If you are familiar with Python, you will soon realise that R and Python, although they
share many concepts and types of objects, can differ substantially. This is because R is
a functional programming language (based on functions) while Python is an Object
Oriented programming language (based on methods applied on objects).

Generally speaking, functions look like print (x) while methods look like x.print ()

4.4.4 String and logical vectors

Not just numbers.

We have seen that variables can hold numeric vectors. But vectors are not restricted to being
numeric. They can also store strings. A string is basically a set of characters (a word, a
sentence, a full text). In R, strings have to be quoted using double quotes " ".

46

Change the following strings to your
quotes.

name <- "Stefano"
surname <- "Coretta"

name

[1] "Stefano"

surname

[1] "Coretta"

name and surname. Remember to use the double

Strings can be used as arguments in functions, like numbers can.

cat("My name is", name, surname)

My name is Stefano Coretta

Remember that you can reuse the same variable name to override the variable value.

name <- "Raj"

cat("My name is", name, surname)

My name is Raj Coretta

You can combine multiple strings into a character vector, using the combine function c()
(the function works with any type of vectors, not only characters!).

Character vector

A character vector is a vector that

holds one or more strings.

fruit <- c("apple", "oranges", "bananas")
fruit
[1] "apple" "oranges" "bananas"

47

Check the Environment tab. Character vectors have chr before the list of values.

Another type of vector is one that contains either TRUE or FALSE. Vectors of this type are
called logical vectors and they are listed as logi in the Environment tab.

Logical vector

A logical vector is a vector that holds one or more TRUE or FALSE values.

groceries <- c("apple", "flour", "margarine", "sugar")
in_pantry <- c(TRUE, TRUE, FALSE, TRUE)

data.frame(groceries, in_pantry)

groceries in_pantry

1 apple TRUE
2 flour TRUE
3 margarine FALSE
4 sugar TRUE

TRUE and FALSE values must be written in all capitals and without double quotes (they are not
strings!).

(We will talk about data frames, another type of object in R, in the following chapters.)

Quiz 5

a. Which of the following is not a character vector.

e (A) c(1, 2, "43")
° (B) ngn

o (C) c(apple) (assuming apple <- 45)

(D) c(letters)

b. Which of the following is not a logical vector.

(A) (T, T, F)
. (B) TRUE

« (C) "FALSE"

48

« (D) c(FALSE)

Hint
You can use the class() function to check the type (“class”) of a vector.

class(FALSE)

[1] "logical"
class(c(1, 45))
[1] "numeric"
class(c("a", "b"))

[1] "character"

Explanation
5a

o c(1, 2, "43") is a character vector because the last number "43" is a string (it’s
between double quotes!). A vector cannot have a mix of types of elements: they
have to be all numbers or all strings or else, but not some numbers and some strings.
Numbers are special in that if you include a number in a character vector without
quoting it, it is automatically converted into a string. Try the following:

char <- c("a", "b", "c")
char <- c(char, 1)

char

class(char)

e c(letters) is a character vector because letters contains the letters of the al-
phabet as strings (this vector comes with base R).

o c(apple) is not a character vector because the variable apple holds a number, 45!

5b

o "FALSE" is not a logical vector because FALSE has been quoted (anything that is
quoted is a string!).

49

R Note: For-loops and if-else statements

This course does not cover programming in R in the strict sense, but if you are curious
here’s a short primer on for-loops and if-else statements in R.
For-loops

fruits <- c("apples", "mangos", "durians")

for (fruit in fruits) {
cat("I like", fruit, "\n")
}

I like apples
I like mangos
I like durians

If-else

for (fruit in fruits) {
if (grepl("n", fruit)) {

cat(fruit, "has an 'n'", "\n")
} else {
cat(fruit, "does not have an 'n'", "\n")

}
}

apples does not have an 'n'
mangos has an 'n'
durians has an 'n'

For more, check the For loops section of the R4DS book and the R if else statement post
from DataMentor.

4.5 Summary

You made it! You completed this chapter.

Here’s a summary of what you learned.

50

https://r4ds.hadley.nz/base-r#for-loops
https://www.datamentor.io/r-programming/if-else-statement

¢ R is a programming language while RStudio is an IDE.

o RStudio projects are folders with an .Rproj file (you can see the name of the
project you are currently in in the top-right corner of RStudio).

¢ You can perform mathematical operations with +, -, *, /.
e You can store values in variables.

e A typical object to be stored in a variable is a vector: there are different type of
vectors, like numeric, character and logical.

e Functions are used to perform an operation on its arguments: sum() sums its
arguments, mean () calculates the mean and cat () prints the arguments.

R Note: Programming in R

If you are interested in learning about programming in R, I recommend you go through
Chapters 26-28 of the R4DS book and the Advanced R book.

51

https://r4ds.hadley.nz/functions
https://adv-r.hadley.nz

5 R packages

m_";

Important

When working through the book, always make sure you are in a Quarto Project by
checking the top-right corner of RStudio.

When you install R, a library of packages is also installed. Packages provide R with extra
functionalities, usually by making extra functions available for use. You can think of packages
as “plug-ins” that you install once and then you can “activate” them when you need them.
The library installed with R contains a set of packages that are collectively known as the base
R packages, but you can install more at any time!

Note that the R library is a folder on your computer. Packages are not installed inside RStudio.
Remember that RStudio is just an interface.

You can check all of the currently installed packages in the bottom-right panel of RStudio, in
the Packages tab. There you can also install new packages.

R library and packages
e The R library contains the base R packages and all the user-installed packages.

e R packages provide R with extra functionalities and are installed into the R
library.

R Note: Where is my R library?

If you want to find the path of the R library on your computer, type .1ibPaths () in the
Console. The function returns (i.e. outputs) the path or paths where your R library is.

5.1 Install packages

You can install extra packages in the R library in two ways:

02

1. You can use the install.packages() function. This function takes the name of the
package you want to install as a string, for example install.packages("cowsay").

Important

If you install a package with the function install.packages(), do so in the Console!
You will start using R scripts soon, so please do not include this function in your
scripts (this is because you install packages only once, see below).

2. Or you can go the Packages tab in the bottom-right panel of RStudio and click on
Install. A small window will pop up. See the screenshot below.

Install Packages

Install from: ?) Configuring Repositories
| Repository (CRAN) ~

Packages (separate multiple with space or comma):

fortunes cowsay|

Install to Library:
| /Users/ste/repos/dalirenv/library/R-4.3/aarch64-apple-darwin20 [Def: v|

v Install dependencies

Install Cancel

Go ahead and try to install a package using the second method. Install the cowsay and the
fortunes packages (see picture above for how to write the packages). After installing you will
see that the package “fortunes” is listed in the Packages tab.

Install packages

To install packages, go to the Packages tab of the bottom-right panel of RStudio and
click on Install.
In the “Install packages” window, list the package names and then click Install.

Important

You need to install a package ONLY ONCE! Once installed, it’s there forever,
saved in the R library. You will be able to use all of your installed packages in any
RStudio/Quarto project you create.

93

5.2 Attaching packages

Now, to use a package you need to attach the package to the current R session with the
library() function. Attaching a package makes the functions that come with the package
available to us.

Important

You need to attach the packages you want to use once per R session.
Note that every time you open RStudio, a new R session is started.

Let’s attach the cowsay and fortunes packages. Run the following code in the Console.

library (cowsay)
library(fortunes)

Note that library(cowsay) takes the name of the package without quotes, although if you
put the name in quotes it also works. You need one library() function per package (there
are other ways, but we will stick with this one).

Attaching packages

Packages are attached with the library(pkg.name) function, where pkg.name is the
name of the package.

Now you can use the functions provided by the attached packages. Try out the say () function
from the cowsay package.

say ("hot diggity", "frog")

(I know, the usefulness of the package might be questionable, but it is fun!)

Important

Remember, you need to install a package only once but you need to attach it with
library() every time you start R.

Think of install.packages() as mounting a light bulb (installing the package) and
library() as the light switch (attaching the package).

o4

install.packages("light"”) 1library("light")

Images sourced from https://www.wikihow.com/Change-a-Light-Bulb

5.3 Package documentation

To learn what a function does, you can check its documentation by typing in the Console the
function name preceded by a ? question mark. Type ?say in the Console and hit ENTER to
see the function documentation. You should see something like this:

55

Files Plots Packages Help Viewer Presentation

- A A
R: Sling messages and warnings with flair - | Find in Topic

say {cowsay} R Documentation

Sling messages and warnings with flair

Description
Sling messages and warnings with flair

Usage

say(
what = "Hello world!",
by = "cat",
type =
what_color
by_color =
length =
fortune =

)

Arguments

what (character) What do you want to say? See Details.

by (character) Type of thing, one of cow, chicken, chuck, clippy, poop, bigcat, ant, pumpkin, ghost, spider, rabbit, pig, snowman, frog, hypnotoad, shortcat, longcat, fish,
signbunny, facecat, behindcat, stretchycat, anxiouscat, longtailcat, cat, trilobite, shark, buffalo, grumpycat, smallcat, yoda, mushroom, endlesshorse, bat, bat2,
turkey, monkey, daemon, egret, duckling, duck, owl, squirrel, squirrel2, goldfish, alligator, stegosaurus, whale, wolf, or rms for Richard Stallman. Alternatively, use
“random" to have your message spoken by a random character. We use match.arg(). internally, so you can use unique parts of words that don't conflict with
others, like "g" for "ghost" because there's no other animal that starts with "g".

type (character) One of message (default), warning, print (default in non-interactive mode), or string (returns string). If multiple colors are supplied to or

, type cannot be warning. (This is a limitation of the multicolor packcage :/.) If run in non-interactive mode default type is print, so that output goes to

stdout rather than stderr, where messages and warnings go.

what_color (character or crayon function) One or more crayon-suported text color(s) or cra to color . You might try or for ideas.
Use "rainbow" for c("red", "orange", "yellow", "green", "blue", "purple").

by_color (character or crayon function) One or more /on-suported text color(s) or to color . Use "rainbow" for

length (integer) Length of longcat. Ignored if other animals used.

fortune An integer specifying the row number of fortunes.data. Alternatively which can be a character and grep is used to try to find a suitable row.

The Description section is usually a brief explanation of what the function does.

In the Usage section, the usage of the function is shown by showing which arguments the
function has and which default values (if any) each argument has. When the argument does
not have a default value, NULL is listed as the value.

The Arguments section gives a thorough explanation of each function argument. (Ignore ... for
now).

How many arguments does say () have? How many arguments have a default value?

Default argument values allow you to use the function without specifying those arguments.
Just write say() in your script on a new line and run it. Does the output make sense based
on the Usage section of the documentation?

The rest of the function documentation usually has further details, which are followed by
Examples. It is always a good idea to look at the examples and test them in the Console when
learning new functions.

o6

Quiz 1
Which of the following statements is wrong?

e (A) You attach libraries with library().
o (B) install.packages() does not load packages.
e (C) The R library is a folder.

Explanation

This was a question about terminology. In R, you attach packages from the library using
(confusingly) the 1ibrary () function.

57

Part |l

Week 2

o8

6 Inference

Area Statistics

BROTHER

Imbuing numbers with meaning is a good characterisation of the inference process. Here
is how it works. We have a question about something. Let’s imagine that this something
is the population of British Sign Language signers. We want to know whether the cultural
background of the BSL signers is linked to different pragmatic uses of the sign for BROTHER.
But we can’t survey the entire population of BSL signers. So instead of surveying all BSL
users, we take a sample from the BSL population. The sample is our data (the product of our
study or observation). Now, how do we go from data/observation to answering our question
about the use of BROTHER? We can use the inference process!

Inference process

Inference is the process of understanding something about a population based on the
sample (aka the data) taken from that population.

The figure below is a schematic representation of the inference process.

59

Producing Data

Population —

Inference N y-

The inference process has two main stages: producing data and inference. For the first step,
producing data, we start off with a population. Note that population can be a set of any-
thing, not just a specific group of people. For example, the words in a dictionary can be a
“population”; or the antipassive constructions of Austronesian languages, and so on. From
that population, we select a sample and that sample produces our data. We analyse the data
to get results. Finally, we use inference to understand something about the population based
on the results from the sampled data. Inference can take many forms and the type of inference
we are interested in here is statistical inference: i.e. using statistics to do inference.

However, despite inference being based on data, it does not guarantee that the answers to our
questions are right or even that they are true. In fact, any observation we make comes with a
certain degree of uncertainty and variability.

Quiz 1
True or false?

a. Inference is not needed if you gather data from the entire population. TRUE /
FALSE

b. Population refers only to human participants. TRUE / FALSE

c. A sample is always a truthful representation of the population. TRUE / FALSE

60

d. You can collect the same sample multiple times. TRUE / FALSE

Spotlight: Science is wrong

e Check out the Scientific American article If You Say ‘Science Is Right,” You’re
Wrong by Naomi Oreskes: https://www.scientificamerican.com /article/if-you-say-
science-is-right-youre-wrong/.

e Learn more about uncertainty and subjectivity in research: Vasishth and Gelman
(2021), Gelman and Hennig (2017).

6.1 Uncertainty and variability

3

The only certainty is uncertainty

~ Pliny the Elder

Pliny the Elder was a Roman philosopher who died in the Vesuvius eruption in 79 CE. He
certainly did not expect to die then. Leaving dark irony aside, as researchers we have to deal
with uncertainty and variability.

Uncertainty and variability

e Uncertainty is a characteristic of each observation of a phenomenon, due to mea-
surement error or because we cannot directly measure what we want to measure.

e Variability is found among different observations of the same phenomenon, due
to natural fluctuations and measurement error.

61

https://www.scientificamerican.com/article/if-you-say-science-is-right-youre-wrong/
https://www.scientificamerican.com/article/if-you-say-science-is-right-youre-wrong/
https://en.wikipedia.org/wiki/Pliny_the_Elder

So uncertainty is a feature of each measurement, while variability occurs between different mea-
surements. Together, uncertainty and variability render the inference process more complex
and can interfere with its outcomes.

The following picture is a reconstruction of what Galileo Galilei saw when he pointed one of
his first telescopes towards Saturn, based on his 1610 sketch: a blurry circle flanked by two
smaller blurry circles.

Only six years later, telescopes were much better and Galileo could correctly identify that the
flanking circles were not spheres orbiting around Saturn, but rings. The figures below show
how the sketches evolved over time between first observation and publication.

B » D

Galileo first sketch Better telescope Published etch
1610 1616 1623

The moral of the story is that at any point in history we are like Galileo in at least some of
our research: we might be close to understanding something but not quite yet.

To give a more concrete example of how each sample is but an imperfect represetation of the
population it is taken from, let’s look at reaction times (RTs) data from the MALD dataset

62

https://en.wikipedia.org/wiki/Galileo_Galilei

(Tucker et al. 2019). The study the data comes from used an auditory lexical decision task
to elicit RTs and accuracy data. In each trial, participants listened to a word and pressed
a button to say if the word is a real English word or not. The RT is the time lag between
the offset of the auditory stimulus (the target word) and the button press. Note that to keep
things more manageable, the data we will read is just a subset of the full data. Figure 6.1
shows a density plot of the data: the z-axis is the range of RTs (in logged milliseconds), while
the y-axis shows the “density” of the data. Higher density means that the data contains a lot
of observations in that region. Conversely, low density means that the data does not contain
a lot of observations in that range. You will learn more about density plots in Chapter 18.

mald <- readRDS("data/tucker2019/mald_1_1.rds")

mald |>
filter (RT_log > 6) |>
ggplot (aes(RT_log)) +
geom_density(fill = "purple", alpha = 0.5) +
geom_rug(alpha = 0.1) +
labs(x = "Reaction Times (logged ms)")

15-

density

0.5-

0.0-
I T R R mE e e e
6.0 6.5 7.0 7.5 8.0

Reaction Times (logged ms)

Figure 6.1: Distribution of logged RT values from the MALD data set. The density is a relative
measure of how many observations for particular values there are in the data.

The mean logged RT is 6.88 and the standard deviation (a measure of dispersion around the
mean, you will learn about them in Chapter 10) is 0.28. We might take these values as the

63

mean and standard deviation of the population of logged RTs. But this would not be correct:
these are the sample mean and standard deviation. To show why we cannot take these to
be the mean and standard deviation of the population, we can simulate RT data based on
those values (you will understand the details of this later on, when you learn about probability
distributions in Chapter 18, so for now just stay for the ride).

set.seed(9899)
rt 1 <- list()
for (i in 1:10) {
rt_1[i] <- list(rlnorm(n = 20, mean(mald$RT_log), sd(mald$RT_log)))
+

We sample 20 randomly generated values from a distribution with mean 6.88 and standard
deviation 0.28. We then can take the mean and SD of these generated values and compare
them to the original distribution’s mean and SD. But we can go further and sample 20 values
10 times. This procedure gives us 10 means and standard deviations, one for each sample
of 20 values. The means and standard deviations of these 10 random samples are shown in
Table 27.3.

Table 6.1
sample mean sd
1 684 0.24
2 7.02 0.30
3 692 0.19
4 6.88 0.31
5 6.84 0.27
6 6.80 0.22
7 6.84 0.25
8 695 0.34
9 6.99 0.31
10 6.97 0.32

You will notice that, while all the means and SD are very close to the mean and SD we sampled
from, they are not exactly the same: every sample’s mean and SD are slightly different from
each other and from the mean and SD we sample from. In other words, it’s very very unlikely
that the sample mean and standard deviation are exactly the population mean and standard
deviation. Inference is affected by uncertainty and variability. So what do we do with such
uncertainty and variability? We can use statistics to quantify them!

64

Statistics

Statistics is a tool that helps us quantifying uncertainty and controlling for
variability.

But what is statistics exactly?

6.2 What is statistics (and isn’t)?

Statistics is a tool. But what does it do? There are at least four ways of looking at statistics
as a tool.

e Statistics is the science concerned with developing and studying methods for collect-
ing, analyzing, interpreting and presenting empirical data. (From UCI Department of
Statistics)

o Statistics is the technology of extracting information, illumination and understanding
from data, often in the face of uncertainty. (From the British Academy)

e Statistics is a mathematical and conceptual discipline that focuses on the relation
between data and hypotheses. (From the Standford Encyclopedia of Philosophy)

o Statistics is the art of applying the science of scientific methods. (From ORI Results,
Nature)

To quote a historically important statistician:

Statistic is both a science and an art.

It is a science in that its methods are basically systematic and have general application
and an art in that their successful application depends, to a considerable degree, on
the skill and special experience of the statistician, and on his knowledge of the field of
application.

—L. H. C. Tippett

Spotlight: Etymology

The word statistics is related to state and it is no coincidence. The discipline of statistics
was born as a sub-field of politics and economics. Check out the full etymology of statistics
here: https://en.wiktionary.org/wiki/statistics#Etymology_ 1.

Statistics is a many things, but it is also not a lot of things.

o Statistics is not maths, but it is informed by maths.

65

https://www.stat.uci.edu/what-is-statistics/
https://www.stat.uci.edu/what-is-statistics/
https://www.thebritishacademy.ac.uk/blog/what-is-statistics/
https://plato.stanford.edu/entries/statistics/
https://www.oriresults.com/articles/blog-posts/the-art-of-statistics/
https://www.nature.com/articles/d41586-019-00898-0
https://en.wiktionary.org/wiki/statistics#Etymology_1

Statistics is not about hard truths, but about how to seek the truth.

Statistics is not a purely objective endeavour. In fact there are a lot of subjective
aspects to statistics (see below).

Statistics is not a substitute of common sense and expert knowledge.

Statistics is not just about p-values and significance testing.

As Gollum would put it, all that glisters is not gold.

MY
PRECIOUS

Quiz 2

True or false?
a. Statistics is necessary if one wants to know the truth. TRUE / FALSE
b. Statistics is only relevant to objective science. TRUE / FALSE

c. Statistics is based on mathematics but it is also informed by philosophy. TRUE /

FALSE

d. We can completely remove uncertainty with statistics. TRUE / FALSE

66

6.3 Many Analysts, One Data Set: subjectivity exposed

In Silberzahn et al. (2018), a group of researchers asked 29 independent analysis teams to
answer the following question based on provided data: Is there a link between player skin tone
and number of red cards in soccer? Crucially, 69% of the teams reported an effect of
player skin tone, and 31% did not. In total, the 29 teams came up with 21 unique types
of statistical analysis. These results clearly show how subjective statistics is and how even a
straightforward question can lead to a multitude of answers. To put it in Silberzahn et al’s
words: “The observed results from analyzing a complex data set can be highly contingent on
justifiable, but subjective, analytic decisions. This is why you should always be somewhat
sceptical of the results of any single study: you never know what results might have been
found if another research team did the study. This is one of the reasons why replicating research
is very important. You will learn about replication and related concepts in Chapter 17.

Coretta et al. (2023) tried something similar, but in the context of the speech sciences: they
asked 30 independent analysis teams (84 signed up, 46 submitted an analysis, 30 submitted
usable analyses) to answer the question: Do speakers acoustically modify utterances to signal
atypical word combinations? Outstandingly, the 30 teams submitted 109 individual analyses—
a bit more than 3 analyses per team!—and 52 unique measurement specifications in 47 unique
model specifications. Coretta et al. (2023) say: “Nine teams out of the thirty (30%)
reported to have found at least one statistically reliable effect (based on the infer-
ential criteria they specified). Of the 170 critical model coefficients, 37 were claimed to show
a statistically reliable effect (21.8%).” Figure 6.2 illustrates the analytic flexibility typical of
acoustic analyses. (A) shows the pipeline of decision a researcher would have to do: which
linguistic unit, which temporal window, which acoustic parameters and how to measure those.
You can appreciate that there are potentially many combinations. (B) illustrates the funda-
mental frequency (f0) contour of the sentences “I can’t bear ANOTHER meeting on Zoom”
and “I can’t bear another meeting on ZOOM?”. In both sentences, the green shaded area marks
the word “another”. Finally, in (C) you see the different parameters that can be extracted
from the fO contour of the word “another”. In sum, there are many choices a researcher is
faced with and, while most of these choices might be justifiable, they are still subjective, as
shown by the large variability of actual analyses carried out by the analysis teams in Coretta
et al. (2023).

6.4 The “New Statistics”

The Silberzahn et al. (2018) and Coretta et al. (2023) studies are just the tip of the ice-
berg. We are currently facing a “research crisis”. As mentioned above, we will dig deeper into
this subject in Chapter 17. In brief, the research crisis is a mix of problems related to how
research is conducted and published. In response to the research crisis, Cumming (2013) intro-
duced a new approach to statistics, which he calls the “New Statistics”. The New Statistics

67

@ 1 temporal granularity?

!

3 what parameter to measure?

syllable word phrase .. l{ﬁ

2 temporal window? f0 duration intensity ...

@ 4 how to measure?
'hope' 'zoom' ‘another' ... lﬁ'

max mean value
at mid

@ —f0 max
——7F0 max
——f0 offset f0 onset— ~——f0 offset
f0 onset— J
£0 min ——f0 min
mean, sd, n, d,
onset-offset onset-offset

Figure 6.2: Illustration of the analytic flexibility associated with acoustic analyses (from
Coretta et al. 2023)

68

mainly addresses three problems: (1) published research is a biased selection of all (existing
and possible) research; (2) data analysis and reporting are often selective and biased, (3) in
many research fields, studies are rarely replicated, so false conclusions persist. To help solve
those problems, the New Statistics proposes these solutions (among others): (1) promoting
research integrity, by which researchers explicitly discuss the subjectivity and shortcomings
of quantitative research, (2) shifting away from statistical significance of differences between
groups to quantitative estimation of those differences, (3) building a cumulative quantita-
tive discipline, in which phenomena are studied again and again in the same contexts and with
the same conditions to ensure they are robust enough.

Kruschke and Liddell (2018) revisit the New Statistics and make a further proposal: to adopt
the historically older but only recently popularised approach of Bayesian statistics. They call
this the Bayesian New Statistics. The classical approach to statistics is the frequentist
method, based on work by Fisher, Neyman and Pearson. Put simply, frequentist statistics
is based on rejecting the “null hypothesis” (i.e. the hypothesis that there is no difference
between groups) using p-values. Bayesian statistics provides researchers with more appropri-
ate and more robust ways to answer research questions, by reallocating belief or credibility
across possibilities. You will learn more about the frequentist and the Bayesian approaches in
Chapter 20.

This textbook adopts the Bayesian New Statistics approach. Note that we will not really touch
upon Bayesian statistics in the strict sense until Chapter 20, just before statistical modelling
will be introduced. So you should not worry too much about it for now: just try to appreciate
that not only is statistics not intended to objectively separate truths from falsities, but also
there are several ways to practise statistics. After all, statistics is a human activity, and
like all other human activities it is embedded in the world constructed by humans and their
idiosyncrasies.

Quiz 3

Three researchers meet at a coffee shop. Each of them tells the other two about their
recent findings. Below, you can find what each said. Based on how they talk about the
results, which one among them aligns with the New Statistics approach and recognises
the shortcomings of research?

o (A) Researcher A. My team investigated the effect of emotional dysregulation on
speaking rate and they found a significant effect. We have ultimately shown
that people with emotional dysregulation speak faster.

e (B) Researcher B. I wanted to know if it is true that languages with morpho-
logically rich grammars are more difficult to learn than isolating languages.
We tested several measures of learning difficulty in two groups of infants,
one learning a morphologically rich language and one learning an isolating
language. We found that two measures were significantly higher for the

69

morphologically rich language group than the isolating language group. Hence
we have found solid evidence that morphologically rich grammars are more
difficult to learn.

e (C) Researcher C. We compared reaction times (RTs) of chimpanzees looking
at videos of humans vs chimpanzees signing. If low-level motor perception
is mostly affected by the conspecificity (human vs conspecific), we should
see differences in RTs of 20-70 ms. If motor resonance is mostly affected
(activation of the observer’s own motor system when seeing an action they
could perform themselves), we should find differences in RTs of 80-200 ms.
We found that in the conspecific condition, RTs were 74-98 ms shorter at 95%
probability. This range mostly overlaps with the motor resonance hypothesis
(80-200) but it also lies outside of it, somewhat close to the higher end of
the low-level perception range (20-70). In sum, we could not establish which
hypothesis could better explain the data.

6.5 Summary

 Inference is the process of learning something about a population through a sample.

e Uncertainty in each observation and variability across observations affect the infer-
ence process.

o Statistics is a tool to quantify uncertainty and variability.

o The (Bayesian) New Statistics is an approach to statistics that highlights the sub-
jective nature of statistics and stresses the importance of estimation over statistical
significance.

70

7 R scripts

In Chapter 4 and Chapter 5, you’ve been writing R code in the Console and running it there.
But this is not a very efficient way of using R code. Every time, you need to write the code and
execute it in the right order and it quickly becomes very difficult to keep track of everything
when things start getting more involved. A solution is to use R scripts.

R script

An R script is a file with the .R extension that contains R code.

From now on, you should write all code in an R script, until you learn about Quarto documents
in Chapter 13.

7.1 Create an R script

First, create a folder called code in your Quarto project folder. You can do so in two different
ways:

e You can click on the New Folder button in the Files panel (bottom-right) in RStudio,
set the name and click 0K. The folder will be created within the current folder shown in
the Files list.

¢ Since Quarto Projects are just folders on your computer, you can create a new folder as
you would with any other folder from your computer File Explorer/Finder.

The code/ folder will be the folder where you will save all of your R scripts and other docu-
ments.

Now, to create a new R script, look at the top-left corner of RStudio: the first button to the
left looks like a white sheet with a green plus sign. This is the New file button. Click on
that and you will see a few options to create a new file.

Click on R Script. A new empty R script will be created and will open in the File Editor
window of RStudio.

71

"’ - * - # Go to file/function - -~ Addins ~

BN R Script T#N ntitled1

Quarto Document... 1 Save LN Render ¥ -

Quarto Presentation... ¢/> Normal ~ = 1 @ [Format -~ | Insert ~ | Table ~

R Notebook
R Markdown... S

Shiny Web App...
Plumber API... | is a file path that is relative to a folder, which is r
Text File

Note that creating an R script does not automatically save it on your computer. To do so,
either use the keyboard short-cut CMD+S/CTRL+S or click on the floppy disk icon in the menu
below the file tab.

e RAR & - B EM & A Gotofie/function ~ | [@m ~ Addins ~

& tutorial-w02.amd £} Untitled1
AA [B sSourceonSave @~ |

1

Save current document (38S)

Save the file inside the code/ folder with exactly the following name: week-02.R.

Important

Remember that all the files of your RStudio project don’t live inside RStudio but on your
computer.

So you can always access them from the Finder or File Explorer! However, do not open
a file by double clicking on it from the Finder/File Explorer.

Rather, open the Quarto project by double clicking on the .Rproj file and then
open files from RStudio to ensure you are working within the RStudio project and the
working directory is set correctly.

72

7.2 Write code

Now, let’s start filling up that script! Generally, you start the script with calls to library()
to load all the packages you need for the script. Please, get in the habit of doing this from
now, so that you can keep your scripts tidy and pretty! You will learn about the tidyverse
packages in the following chapter, so for now just attach the cowsay and fortune packages.

Important

Start your R scripts with calls to library() and attach all of the packages that are
needed to run that script.

Go ahead, write the following code in the top of the .R script. (The code chunk has a convenient
copy button in the top-right corner which appears when you place the cursor inside the chunk.
If you click the button the code will be copied and you can then paste it in the script).

library(cowsay)
library(fortunes)

say("fortune", “monkey”)
say("What a lovely day for a wedding", "spider")

Important

Please, don’t include install.packages() in your R scripts!

Remember, you only have to install a package once, and you can just type it in the
Console.

But DO include library() calls at the top of your scripts.

7.3 Running scripts

Finally, the time has come to run the script.

There are several ways of doing this. The most straightforward is to click on the Run button.
You can find this in the top-right corner of the script window. Pressing Run will run the line
of code your text cursor is currently on. So you should place the cursor back on line one and
press Run. The code will be executed and you will see it in the Console. If the code returns
any output, this will be shown in the Console too. After the line of code is executed, the text
cursor moves to the next line. You can click on Run again and so on to run each line one by
one. You can also just select all the code (like you would when selecting text in a text editor)

73

and click Run: in this case, all of the code is run, line by line, in the order they appear in the
script.

. ch-scripts.gmd n week-02.R P |
@ A @ source on Save | @ VN | &' Run 4+ 3 P source -
(cowsay)
(fortunes)

say("fortune", "monkey")
say("wWhat a lovely day for a wedding", "spider")

An alternative way is to place the text cursor on the line of code you want to run and then
press CMD+ENTER/CTRL+ENTER. As with clicking Run, this will run the line of code and move
the text cursor to the next line of code. It also works with a selection, like the Run button.
Now that you know how to use R scripts and run code in them, I will assume that you will
keep writing new code in your script and run it from there.

7.4 Comments

Sometimes we might want to add a few lines of text in our script, for example to take notes.
You can add so-called comments in R scripts, simply by starting a line with #. You can also
add trailing comments, by adding a # at the end of a line of R code. For example:

This is a comment. Let's add 6 + 3.
6 + 3

(11 9

3 + 6 # This is a trailing comment. 6 + 3 = 3 + 6

(11 9

Code comments

Text that starts with a hash symbol # in an R script is a comment. Comments are not
executed.

Quiz 1
Is the following a valid line of R code? TRUE / FALSE

sum(x + 2) # x = 4

74

Explanation

It is a valid line of R code with a trailing comment. If you tried to run it in the Console
and got an error it is because the variable x does not exist (unless you had created one
earlier). If you add the line x <- 4 before sum(x + 2) # x = 4, the latter will work
just fine.

So you see there is a difference between valid code and working code.

7.5 Ensuring the script runs

That’s all there is to know about using R scripts. You write code and some comments and you
can run code in the script and see the output in the Console. However, there is an important
aspect that was not explicitly mentioned above: a script is supposed to work from top
(first line) to bottom (last line), so the order of the code in the script matters. A good
habit to get into is to restart the R session every now and then and re-run the entire script.
To restart the R session you can either go to the Session menu > Restart R or you can press
SHIFT+CMD/CTRL+0 (the last key is “zero”). Try this now. Restart the R session and run your
script again.

But why it is important to restart the session to verify that the script runs? A typical case
of scripts that don’t run is when you call a variable in a function before having declared
the variable (with <-) or when you call a function without having attached the package the
function is from. However, an R session remembers everything you run: if you try to run code
with a non-declared variable (like sum(a, 1), but a is not declared) you will get an error; if
you now write the code that declares the variable (a <= 3) but you put it after the line of code
that uses the variable, the code will run because now the variable is declared and available in
the session. If you keep the code this way and restart the session, the code will no longer work.
This is because each line is executed in order and by the time R gets to the sum(a, 1) , the
line a <~ 3 hasn’t been executed yet so a is not available. This example might seem trivial
(and it is) but with more complex scripts it is actually quite easy to do things like this (calling
a variable on line 10 of the script while it is declared on line 1263).

Exercise 1

Create a new script and call it week-02-ex7.1.R (save it in code/). Copy the following
code and try to run it. The script will not run because there are several errors: some are
code errors (i.e. the code is wrong), others are because the code is not written in the right
order. Fix the errors until the script runs correctly. Remember to restart the session!

75

libery(fortunes)

a —> 3
sum(a, b)
b <- 10

#

Let's print a fortune
fotrune(c)

c<-a+b

76

8 Statistical variables

Area Statistics

8.1 Estimandum, estimands and statistical variables

Statistical variables are a fundamental aspect of quantitative data analysis. There isn’t an
agreed upon definition of a statistical variable, but generally speaking, anything that you have
measured or counted is a statistical variable. For example, let’s say you want to measure
language proficiency in L2 learners: “language proficiency” is your estimandum, i.e. the
concept or entity you wish to measure; you decide to measure language proficiency using
the score of a proficiency test, this is the estimand, i.e. the specific measurement of the
estimandum “language proficiency”. When the estimand can take on different values, the
estimand is a statistical variable: every participant will have a different proficiency score.

Estimandum, estimands and variable

An estimandum is any characteristic, phenomenon, entity, or concept that is the target
of the measurement /counting process.

An estimand is the specific quantity of an estimandum that can be measured.

A (statistical) variable is any estimand or characteristics, number, or quantity that
has been measured or counted and can vary.

Language research involves a large variety of statistical variables. Here just a few examples:

o Token number of telic verbs and atelic verbs in a corpus of written Sanskrit.
e Voice Onset Time of stops in Mapudungun.

o Friendliness ratings of synthetic speech.

e Accuracy of responses in a lexical decision task.

o Digit memory span.

o Phrasal headedness (head-initial vs head-final).

Try and think of more!

7

So a statistical variable is a measured characteristic. More specifically, a statistical variable
is also a mathematical construct: the outcome of the specific mathematical process that gen-
erates the values that can be observed and measured. In the case of language proficiency,
the statistical variable “proficiency test score” is generated by a process that includes a lot
of factors (which can themselves be construed as statistical variables), like actual proficiency,
stress levels when taking the test, baseline memory capacity, years of learning and so on. The
generative process, i.e. the process that generates the values of a statistical variable, is
ultimately what the researcher is interested in.

Generative process

The generative process of an estimand is the mathematical process that generates the
values of the estimand that are observed or measured.

When you observe or measure something, i.e. when you collect a sample, you are taking note
of the values of the statistical variable generated by the generative process. We call them
statistical variables because each time you sample the variable, you get different values. In
other words, the generative process allows for variation in the output values. The opposite of
a variable is a called a statistical constant. Generative processes can contain both variables
and constants. Statistical variables and constants are two types of estimands. In practice, you
don’t have to worry about whether something is a variable or a constant and in most research
contexts you will be working with statistical variables.

Quiz 1
True or false?

a. The estimandum refers to the specific measurable quantity of a concept or entity.
TRUE / FALSE

b. The generative process comprises only statistical variables. TRUE / FALSE

c. A statistical variable is defined as any measurable or countable entity that can vary
in value. TRUE / FALSE

8.2 Types of variables

You will find that some statistics textbooks overcomplicate things when it come to types of
statistical variables. From an applied statistics perspective, you only need to be able to identify
numeric vs categorical variables and continuous vs discrete variables.

78

8.2.1 Numeric vs categorical variables

VARIABLE

/\

NUMERIC CATEGORICAL

L1vs L2

Non-bin vs Female vs Male

English vs Scots vs Gaelic

Likert scale

The distinction is quite self-explanatory:

¢ Numeric variables are variables that are numbers.

o Categorical variables are variables that correspond to categories, groups or levels on
a scale.

Examples

Numeric variables

e Number of multi-verb predicates in a book.
¢ Duration of stressed vowels.
e Rating score between 0-100.

Categorical variables

o Gender (non-binary, female, male, ...).
e First vs second language users.
e Ejective vs non-ejective consonant.

Learning how to recognise variables is a fundamental skill in quantitative data analysis, since
the type of variables determines the type of analyses you can carry out.

79

8.2.2 Continuous vs discrete variables

VARIABLE
NUMERIC CATEGORICAL
CONTINUOUS
DISCRETE L——— (DISCRETE)

Orthogonal to the numeric/categorical distinction, there is the continuous vs discrete dis-
tinction. This one can be at times less straightforward.

e A continuous variable is a variable that can take on any value between any two
numbers. For example, speech segment duration can be 0.2 s, 0.25 s, 0.2534 s and so on.
Segment duration is continuous.

¢ A discrete variable is a variable that can only take on a set of values, and no value in
between. For example, number of gestures is discrete because you can measure 1, 2, 3,
10 gestures but not 3 gestures and three quarters.

Numeric variables can be either continuous or discrete, while categorical variables can only
be discrete. There are also sub-types of numeric continuous, numeric discrete and categorical
(discrete) variables. The following call-out introduces these sub-types, with examples.

Types of variables

Numeric continuous variable: between any two values there is an infinite number of
values.

o The variable can take on any positive and negative number, including 0. For exam-
ple, temperature in degrees Celsius.

e The variable can take on any positive number only. For example, segment duration,
fundamental frequency (f0), reaction times.

80

e Proportions and percentages: The variable can take on any number between 0
and 1. For example, proportion of accurate responses, probability of scalar inference,
proportion of voicing during stop closure, acceptability rating on a 0-100 scale.

Numeric discrete variable: between any two consecutive values there are mo other
values.

e Counts: The variable can take only on any positive integer number. For example,
number of telic and atelic verbs in a corpus, number of words known by a child,
number of turns in a conversation.

Categorical (discrete) variable. There are three main subtypes.

e Binary or dichotomous: The variable can take only one of two values. For ex-
ample, accuracy (incorrect, correct), voicing (voiceless, voiced), headedness (initial
vs final).

o The variable can take any of three of more values (sometimes called a multinomial
variable). For example, gender (non-binary, female, male), place of articulation
(labial, coronal, dorsal, glottal, ...).

e Ordinal: The variable can take any of three of more values and the values have
a natural order. For example, Likert scales of attitude (positive, indifferent, nega-
tive), proficiency (functional, good, very good, native-like), lenition (stop, fricative,
approximant, deletion).

8.3 Operationalisation

It should be clear now that the estimand is not quite the same thing as the estimandum. The
estimand is the researcher’s way to capture the estimandum so that it can be analysed. The
relationship between the estimandum and the estimand variable is called operationalisation:
an estimandum is operationalised into an estimand. The action of operationalisation con-
sists in choosing how to measure something: as a numeric or as a categorical variable. In some
cases, the choice is obvious, but in most cases something could be operationalised either way
and different considerations have to be taken into account when choosing, like the particular
framework adopted and the study design.

Let’s think about “age” for a moment: age can be operationalised as years or months (numeric
discrete) or as age bins, like young vs old (categorical). Different studies might require one or
the other operationalisation of the estimandum “age”. Another example is “acceptability” in
morphosyntactic studies: acceptability can be operationalised as a binary categorical variable
(grammatical vs agrammatical, and we normally talk of “grammaticality”), as a categorical

81

scale (acceptable, somewhat acceptable, somewhat not acceptable, unacceptable), or a numeric
continuous scale (0 to 100). It is important, when planning a study, to carefully think about
estimanda (the plural of estimandum) and estimands and how their relationship could be less
clear than one might think.

Exercise 1

Think of all the ways to operationalise the following variables:

e Voice Onset Time.
e Friendliness of speech.
e Lexical frequency.

Quiz 2
Which of the following sets contains only discrete variables.

e (A) Number of occurences in corpus, sentence duration (ms), articulation rate
(syllables per second)

« (B) Reaction times (ms), accuracy (correct/incorrect), 7-point likert scale

o (C) Accuracy (correct/incorrect), 7-point likert scale, number of occurrences in
corpus

o (D) Fundamental frequency (hz), response accuracy (percentage), reaction times
(ms)

82

O Read data in R

9.1 Tabular data

Important

When working through the book, always make sure you are in a Quarto Project by
checking the top-right corner of RStudio. If you see the name of the project you are fine,
if you see Project (none) then you are not in the Quarto Project. Close RStudio and
open the Quarto project.

Data comes in a lot of different formats, shape and sizes. However, the most common way to
store data used in quantitative analysis is so-called tabular data. R is especially designed to
work with such data. Tabular (aka rectangular) data is simply data in the form of a table,
with columns and rows.

Tabular data

Tabular data is data that has a form of a table: i.e. values structured in columns and
TOWS.

Tabular data can be saved in different file formats. Different file formats have different file
extensions. The comma separated values format (file extension .csv) is the best format
to save data in because it is basically a plain text file, it’s quick to parse, and can be opened
and edited with any software (plus, it’s not a proprietary format like .docx or .x1lsx—these
formats are specific to particular commercial software).

This is what a .csv file looks like when you open it in a text editor (showing only the first
few lines). The file contains tabular data (data that is structured as columns and rows, like a
spreadsheet).

Group,ID,List,Target,ACC,RT,1logRT,Critical_Filler,Word_Nonword,Relation_type,Branching

L1,L1_01,A,banoshment,1,423,6.0474,Filler,Nonword,Phonological,NA
L1,L1 _01,A,unawareness,1,603,6.4019,Critical,Word,Unrelated,Left

83

L1,L1 _01,A,unholiness,1,739,6.6053,Critical,Word,Constituent,Left
L1,L1_01,A,bictimize,1,510,6.2344,Filler,Nonword,Phonological,NA

This is what the file would look like when layed out as a table.

A | B \ © \ D \ E \ F \ G \ H \ I \ J \ K
1 |Group ID List Target ACC RT logRT Critical_Filler Word_Nonwor Relation_type Branching
2 L1 L1 01 A banoshment 1 423 6.0474 Filler Nonword Phonological NA
3 L1 L1 01 A unawareness 1 603 6.4019 Critical Word Unrelated Left
4 L1 L1 01 A unholiness 1 739 6.6053 Critical Word Constituent Left
5 L1 L1 01 A bictimize 1 510 6.2344 Filler Nonword Phonological NA

To separate the values of each column, a .csv file uses a comma , (hence the name “comma
separated values”) to separate the values in every row. The first line of the file indicates the
names of the columns of the table:

Group,ID,List,Target,ACC,RT,1logRT,Critical_Filler,Word_Nonword,Relation_type,Branching

There are 11 columns. The rest of the rows is the data, i.e. the values of each column separated
by commas.

L1,L1_01,A,banoshment,1,423,6.0474,Filler,Nonword,Phonological,NA
L1,L1_01,A,unawareness,1,603,6.4019,Critical,Word,Unrelated,Left
L1,L1 _01,A,unholiness,1,739,6.6053,Critical,Word,Constituent,Left
L1,L1_01,A,bictimize,1,510,6.2344,Filler,Nonword,Phonological,NA

This might look a bit confusing, but you will see later that, after importing this type of file,
you can view it as a nice spreadsheet (as you would in Excel), like in the figure above.

Another common type of tabular data file is spreadsheets, like spreadsheets created by
Microsoft Excel or Apple Numbers. These are all proprietary formats that require you to have
the software that were created with if you want to modify them. Portability and openness are
important aspects of conducting research, so that using open and non-proprietary file types
makes your research more accessible and doesn’t privilege those who have access to specific
software (remember, R is free!). Despite of this, a lot of data is shared as Excel files.

There are also variations of the comma separated values type, like tab separated values
files (.tsv, which uses tab characters instead of commas) and fixed-width files (usually .txt,
where columns are separated by as many white spaces as needed so that the columns align).

84

9.1.1 Non-tabular data

Of course, R can import also data that is not tabular, like map data and complex hierarchical
data, including XML, HTML and json data. We will not cover these types of data, but you
can check out the resources in the Extra box.

R Note: Non-tabular data
e See Chapters 21-24 of R for Data Science.

e Look up the sf package for mapping.

9.1.2 .rds files

R has a special way of saving data: .rds files. .rds files allow you to save an R object to a
file on your computer, so that you can read that file back in when you need it. A common use
for .rds files is to save tabular data that you have processed so that it can be readily used
in many different scripts or even by other people, but .rds files can contain any type of R
objects, also lists (so not only tabular data). In the following sections you will learn how to
import (aka read) three types of data: .csv, Excel and .rds files.

Quiz 1
a. Which of the following is not tabular data.
e (A) a. A file with 3 columns and 100 rows.

e« (B) b. An HTML file.

o (C) c. An Excel spreadsheet.

b. Non-tabular data can be saved to .rds files. TRUE / FALSE

0.2 Get the data

The data used in this textbook come from a variety of published and unpublished linguistic
studies. You can download the data files from the QML Data website according to the following
instructions.

85

https://r4ds.hadley.nz
https://r-spatial.github.io/sf/
https://uoelel.github.io/qml-data/

How to get the data

1. Download the zip archive with all the data by clicking on the following link (if this
doesn’t work, right-click and choose “Save linked file” or similar): data.zip. The
data is in a zip archive.

2. Unuzip the zip file to extract the contents. (If you don’t know how to do this, search
for it online for your operating system! Zip archives are a very common way of
distributing data and it is important to know how to use them).

3. Create a folder called data/ (the slash is there just to remind you that it’s a folder,
but you don’t have to include it in the name) in the Quarto project you are using
for the course. You know how to do this from Chapter 7.

4. Move the contents of the data.zip archive into the data/ folder.

1. Open a Finder or File Explorer window.

2. Navigate to the folder where you have extracted the zip file (it will very likely
be the Downloads/ folder).

3. Copy the contents of the zip file.

4. In Finder or File Explorer, navigate to the Quarto project folder, then the
data/ folder, and paste the contents in there. (You can also drag and drop if
you prefer.)

The rest of this chapter will assume that you have created a folder called data/ in the Quarto
project folder and that the files you downloaded are in that folder. The data folder should like
something like this:

data/
cameron2020/
gestures.csv
coretta2018/
formants.csv
token-measures.csv

I recommend that you start being very organised with your files in other projects from now on,
whether it’s for a course or your dissertation or anything else. I also suggest to avoid overly
nested structures (folders in folders in folders in folders...), unless strictly necessary.

86

https://uoelel.github.io/qml-data/data.zip

9.3 Organising your files

The Open Science Framework has the following recommendations that can be applied to any
type of research project.

o Use one folder per project. The project folder will also be your RStudio/Quarto project
folder. Ideally, the project folder should have all the files related to the project (one
exception is PDFs of papers that form the literature background of the project: for those
I recommend using bibliography managing software, like the free Zotero or JabRef).

¢ Separate code from data. A general recommendation is to have a folder code/ or
scripts/ with all the code files of the project and a folder data/ that has all the data.
This makes keeping files in order easier, since everything has its natural place.

e Separate raw data from derived data. Raw data is data that you have gathered that,
if lost, is lost for ever. Derived data is any data that is derived from raw data and that
can be derived again (for example by running a script) if it’s deleted or corrupted.

o Make raw data read-only. You should assume that anything can happen to raw data,
so you should treat it as “read-only”.

To summarise, these recommendations suggest to have a folder for your research
project/course/else, and inside the folder two more folders: one for data and one for
code. The data/ folder could further contain raw/ for raw data (data that should not be lost
or changed, for example collected data or annotations) and derived/ for data that derives
from the raw data, for example through automated data processing.

It might be useful to also have a separate folder called figs/ or img/ to save figures and plots.
Of course which folders you will have it’s ultimately up to you and needs will vary depending
on the nature and practical aspects of each study.

9.4 Read .csv files

In this section, you will learn how to read .csv files. Reading .csv files is very easy. You can
use the read_csv() function from a collection of R packages known as the tidyverse. Specif-
ically, the read_csv() function is from the readr package, one of the tidyverse packages. If
you are learning R for the first time, then you won’t already have the tidyverse packages in-
stalled (you can check in the Packages tab in the bottom-right panel). Installing the tidyverse
packages is easy: you just need to install the tidyverse package and that will take care of
installing the most important packages in the collection (called the “core” tidyverse packages).
Note that installation of the core tidyverse packages can take some time (but remember that
you do this only once). If you need to install the tidyverse packages, do it now.

87

https://osf.io
https://help.osf.io/article/147-organizing-files
https://www.zotero.org
https://www.jabref.org
https://www.tidyverse.org
https://readr.tidyverse.org
https://www.tidyverse.org/packages/

Did you open the Quarto project?

Before moving on, make sure that you have opened the RStudio Quarto project correctly
(see warning at the beginning of the chapter).

Now that you have ensured the tidyverse packages are available, let’s read in data from Song
et al. (2020). The study consists of a lexical decision task in which participants were first
shown a prime, followed by a target word for which they had to indicate whether it was a
real word or a nonce word. The prime word belonged to one of three possible groups, each of
which refers to the morphological relation of the prime and the target word. We will get back
to this data in later chapters, so for now it is sufficient if you just read the paper’s abstract to
get a general idea of the research context.

The read_csv() function from the readr package only requires you to specify the file path
as a string (remember, strings are quoted between " ", for example "year_data.txt"). The
data to be read are in the data/ folder, in song2020/shallow.csv. On my computer, the file
path of song2020/shallow.csv is /Users/ste/qdal/data/song2020/shallow.csv, but on
your computer the file path will be different, of course. However, you will learn a trick below,
i.e. relative paths, that allows you to specify file paths in a shortened form.

Note that while the read_csv () function does read the data in R, you must assign the output
of the read_csv() function (i.e. the data we are reading) to a variable, using the assignment
arrow <-, just like we were assigning values to R variables in previous chapters. And since the
read_csv() is a function from the tidyverse, you first need to attach the tidyverse packages
with library(tidyverse) (remember, you need to attach packages only once per session).
This will attach the core tidyverse packages, including readr. Of course, you can also attach
the individual packages directly: library(readr). If you use library(tidyverse) there is
no need to attach individual tidyverse packages.

Open your week-02.R script. Add the following lines in the script (don’t change the file path!
explanation below) and run the code (you might want to put the library() line at the top
of the script, with the other packages). The read_csv() line will print information about the
data and read the data into shallow.

library(tidyverse)

shallow <- read_csv("./data/song2020/shallow.csv")

Rows: 6500 Columns: 11

-- Column specification ---——--------------——————————
Delimiter: ","

chr (8): Group, ID, List, Target, Critical_Filler, Word_Nonword, Relation_ty...
dbl (3): ACC, RT, logRT

88

i Use “spec()” to retrieve the full column specification for this data.
i Specify the column types or set “show_col_types = FALSE™ to quiet this message.

If you look at the Environment tab, you will see shallow listed under Data. You can preview
the data by clicking on the name of the data in the Environment tab. A View tab will be
opened in the top-left panel of RStudio and you will see a nicely formatted table, as you would
in a programme like Excel. We will dive into this data later, so just have a peek for now.

Data frames and tibbles

In R, a data table is called a data frame.

Tibbles are special data frames created with the read functions from the tidyverse. If
you are curious about the difference, check this page.

In this textbook, “data frame” and “tibble” will be used interchangeably (since we are
using the read functions from the tidyverse, all resulting data frames will be tibbles).

But wait, what is that "./data/song2020/shallow.csv"? That’s a relative path. Let’s
understand the concept of relative paths now.

9.4.1 Relative paths

File paths can be specified in two formats. One format is called absolute file path. An
absolute file path include all folders from the top-most folder, which is normally your
computer’s hard drive. For example, /Users/ste/qdal/data/song2020/shallow.csv
from above is an absolute path. You know it’s an absolute path because it starts with
the forward slash /. This means that there isn’t anything above Users/: it’s the top-
most folder. A downside of absolute paths is that they are not portable: if I move the
qgdal/ folder to ste/Documents then I need to change every occurrence in my scripts to
/Users/ste/Documents/qdal/data/song2020/shallow.csv. Moreover, when you share
your research code (and you should!), using absolute paths means that each person that wants
to run the code has to update the absolute path to reflect their own.

A solution is to use relative paths. Relative paths work by including the path only from
within a specific folder. Whichever folders contain that specific folder do not matter. The
specific folder is called the working directory. When you are using Quarto projects, the
working directory is the project folder, i.e. the folder with the .Rproj and _quarto.yml files.

Working directory

The working directory is the folder which relative paths are relative to.
When using Quarto projects, the working directory is the project folder.

89

https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html#:~:text=There%20are%20three%20key%20differences,%2C%20subsetting%2C%20and%20recycling%20rules.

Relative paths are specified by starting the path with ./. For example, if your

project is called awesome_proj and it’s in Downloads/stuff/, then if you write
read_csv("./data/results.csv") R knows you mean to read the file in Downloads/stuff/awesome_proj/dat.
This works because when working with Quarto projects, all relative paths are relative to the

working directory which is automatically set to the project folder.

Relative path

A relative path is a file path that is relative to a folder (the working directory). The
folder the path starts at is represented by ./.

The code read_csv("./data/song2020/shallow.csv") above will work because you are us-
ing a Quarto project and inside the project folder there is a folder called data/ and in it there’s
the song2020/shallow.csv file. When you run the code, R will “expand” the relative path to
the absolute path and correctly find the file to read. I strongly recommend you to use Quarto
projects and relative paths to make your work portable. As hinted at above, the benefit of
Quarto projects and relative paths is that, if you move your project or rename it, or if you
share the project with somebody, all the paths will just work because they are relative.

Exercise 1: Get the working directory

You can get the current working directory with the getwd () command.

Run it now in the Console! Is the returned path the project folder path?

If not, it might be that you are not working from a Quarto project. Check the top-right
corner of RStudio: is the project name in there or do you see Project (none)?

If it’s the latter, you are not in a Quarto project, but you are running R from somewhere
else (meaning, the working directory is somewhere else). If so, close RStudio and open
the project.

Quiz 2

1. Given the following absolute path /Users/raj/projects/thesis/data/raw/data.csj
and the working directory /Users/raj/projects/, which of the following paths is
the correct one to read the data.csv file?

<

e (A) a. /thesis/data/raw/data.csv
e (B) b. ./projects/thesis/data/raw/data.csv
e (C) c¢. ./data/raw/data.csv

e (D) d. ./thesis/data/raw/data.csv

90

9.5 Read Excel sheets

To read an Excel file we need first to attach the readxl package. It should already be installed,
because it comes with the tidyverse. If not, install it. Then add the following line to the
script.

library(readxl)

Now we can use the read_excel () function. Let’s read the file.

relatives <- read _excel("./data/los2023/relatives.xlsx")

Now you can view the tibble relatives in the RStudio Viewer. Note that if the Excel file has
more than one sheet, you can specify the sheet number when reading the file (the default is
sheet = 1).

relatives_2 <- read_excel("./data/los2023/relatives.xlsx", sheet = 2)

The second sheet in 10s2023/relatives.xlx contains the description of the columns in the
first sheet.

9.6 Import .rds files

Another useful type of data files is a file type specifically designed for R: .rds files. Each
.rds file can only contain a single R object, like a tibble. You can read .rds files with the
readRDS () function.

glot_status <- readRDS("./data/coretta2022/glot_status.rds")

As always, you need to assign the output of the function to a variable, here glot_status.

.rds files

.rds files are a type of R file which can store any R object and save it on disk.
R objects can be saved to an .rds file with the saveRDS () function and they can be read
with the readRDS() function.

View the glot_status tibble now. It is also very easy to save a tibble to an .rds file with the
saveRDS () function. For example:

91

https://readxl.tidyverse.org/index.html

saveRDS (shallow, "./data/song2020/shallow.rds")

The first argument is the name of the tibble object and the second argument is the file path
to save the object to.

Exercise 2

Read the following files in R, making sure you use the right read_x () function. You can
write your code in the week-02.R script.

o data/koppensteiner2016/takete_maluma.txt (a tab separated file).

e data/pankratz2021/si.csv.

o Go to https://datashare.ed.ac.uk/handle/10283/4006, download the file
conflict_data_.x1lsx, and save it in data/. Read both sheets (“conflict_ data2”
and “demographics”). Any issues? (I suggest looking at the spreadsheet in Excel).

92

https://datashare.ed.ac.uk/handle/10283/4006

10 Summary measures

Area Statistics

10.1 Overview

Quantitative
analysis

B

0
|

E_%

o=/

0

As you learned in Chapter 3, quantitative data analysis can be conceived as three activities:
summarising, visualising and modelling data. In this chapter, you will learn about summarising
data. When we say “summarising data” we usually mean summarising data variables, by

themselves or in group. We can summarise statistical variables using summary measures
There are two types of summary measures.

¢ Measures of central tendency indicate the typical or central value of a variable.

¢ Measures of dispersion indicate the spread or dispersion of the variable values
around the central tendency value.

Always report a measure of central tendency together with its measure of disper-
sion! A central tendency measure captures only one aspect of the “distribution” of the values
and variables with the same central tendency value could have very different dispersion, and
hence be very different in nature. For example, look at the density plot in Figure 10.1 (you
will learn more about them in Chapter 18). These plots are good at showing the distribution
of values of numeric variables. The higher the density the curve, the more the values under
that part of the curve are represented in the sample. Variable a and b have the same mean
(central tendency): the mean is 0. But a has a standard deviation (measure of dispersion,
more on this below) of 1 while b’s standard deviation is 3. You can appreciate how different
a and b are, despite having exactly the same mean. This should show how important it is to
not only report (and think about) central tendencies, like the mean, but also the dispersion of
the data around the central tendency.

0.4-

0.3-
variable

[]a
0.2- HE

density

0.1-
0.0-
s 4 : ;
value
Figure 10.1

The following call-outs list common measures of central tendency and dispersions and how
they are calculated. You will probably be familiar with most of them and you don’t have to
memorise the formulae. The sections after this one will dive into when to use each measure
(and how to get them in R), which is much more important.

94

Measures of central tendency

Mean
n
- 21:1561 Ty +...+x,
T = =
n
Median
if n is odd, T n+1
2
e To+Tnyy
if n is even, 2——2—
2
Mode

The mode is simply the most common value.

Measures of dispersion

Minimum and maximum values
Range
maz(x) — min(z)

The range is the difference between the largest and smallest value.
Standard deviation

X (=22 [z -2+ .+ (v, —3)?
SD = n—1 _\/ : n—1

10.2 Measures of central tendency

A measure of central tendency approximately tells you where the data is most concentrated.

There are three common measures of central tendency: mean, median and mode.

10.2.1 Mean

Use the mean with numeric continuous variables, if:

e The variable can take on any positive and negative number, including 0.

95

mean(c(-1.12, 0.95, 0.41, -2.1, 0.09))

[1] -0.354

e The variable can take on any positive number only.

mean(c(0.32, 2.58, 1.5, 0.12, 1.09))

[1] 1.122

Important

Don’t take the mean of proportions and percentages!

Better to calculate the proportion/percentage across the entire data, rather than take
the mean of individual proportions/percentages: see this blog post. If you really really
have to, use the median.

10.2.2 Median
Use the median with numeric (continuous and discrete) variables.

odd N
median(c(-1.12, 0.95, 0.41, -2.1, 0.09))

[1] 0.09

even N
even <- c(4, 6, 3, 9, 7, 15)
median(even)

[1] 6.5

the median is the mean of the two "central" number

sort (even)

(1] 3 4 6 7 915

96

https://www.robertoreif.com/blog/2018/1/7/why-you-should-be-careful-when-averaging-percentages

mean(c(6, 7))

[1] 6.5

Important
There are two important characteristics of the mean and the median:

e The mean is very sensitive to outliers.

¢ The median is not.

The following list of numbers does not have obvious outliers. The mean and median are
not to different.

no outliers
median(c(4, 6, 3, 9, 7, 15))

[1] 6.5
mean(c(4, 6, 3, 9, 7, 15))

[1] 7.333333

In the following case, there is quite a clear outlier, 40. Look how the mean is higher than
the median. This is because the outlier 40 pulls the mean towards it.

one outlier
median(c(4, 6, 3, 9, 7, 40))

[1] 6.5
mean(c(4, 6, 3, 9, 7, 40))

[1] 11.5

10.2.3 Mode

Use the mode with categorical (discrete) variables. Unfortunately the mode () function in
R is not the statistical mode, but rather it returns the R object type.

97

You can use the table () function to “table” out the number of occurrences of elements in a
vector.

table(c("red", "red", "blue", "yellow", "blue", "green", "red", "yellow"))

blue green red yellow
2 1 3 2

The mode is the most frequent value: here it is red, with 3 occurrences.

Important

Likert scales are ordinal (categorical) variables, so the mean and median are
not appropriate! This is true even when Likert scales are represented with numbers,
like “1, 2, 3, 4, 5” for a 5-point scale.

You should use the mode (you can use the median with Likert scales if you really really
need to...).

10.3 Measures of dispersion

A measure of dispersion measures how much spread the data is around the measure of central
tendency.

10.3.1 Minimum and maximum
You can report minimum and maximum values for any numeric variable.
x 1 <= ¢c(-1.12, 0.95, 0.41, -2.1, 0.09)

min(x_1)

[1] -2.1

max(x_1)

[1] 0.95

98

range(x_1)

[1] -2.10 0.95

Note that the range() function does not return the statistical range (see next section), but
simply prints both the minimum and the maximum.

10.3.2 Range
Use the range with any numeric variable.

x_1 <= c(-1.12, 0.95, 0.41, -2.1, 0.09)
max(x_1) - min(x_1)

[1] 3.05

x_2 <- ¢(0.32, 2.58, 1.5, 0.12, 1.09)
max (x_2) - min(x_2)

[1] 2.46

x_ 3 <-c(4, 6, 3, 9, 7, 15)
max(x_3) - min(x_3)

[1] 12

10.3.3 Standard deviation

Use the standard deviation with numeric continuous variables, if:

e The variable can take on any positive and negative number, including 0.

sd(c(-1.12, 0.95, 0.41, -2.1, 0.09))

[1] 1.23658

e The variable can take on any positive number only.

99

sd(c(0.32, 2.58, 1.5, 0.12, 1.09))

[1] 0.9895555

Important

Standard deviations are relative and depend on the measurement unit/scale!
Don’t use the standard deviation with proportions and percentages!

10.4 Summary table of summary measures

To conclude, here is a table that summarises when each measure should be used, depending on
the nature of the variable. You can use this table as a cheat-sheet. Green cells indicate that
the measure is appropriate for the variable, red cells indicates that they are not and should not
be used, and orange cells indicate you should exercise caution when using those measures with
those variables. Gray cells indicate that it’s mathematically impossible to apply that measure
to that type of variable.

central tendency dispersion
mean median mode min-max range standard dev
any number v v _ v v v
numeric continuous positive numbers ! v . v v !
proportions/perc IR 1 X v v X
discrete counts . v ! v v s
categorical (discrete) 4

100

11 Summarise data

11.1 Summarise with summarise()

Now that you have learned about summary measures, we can talk about how to summarise
data in R, rather than just vectors as we did in the previous chapter. When you work with
data, you always want to get summary measures for most of the variables in the data. Data
reports usually include summary measures. It is also important to understand which summary
measure is appropriate for which type of variable, which was covered in the previous section.
Now, you will learn how to obtain summary measures using the summarise() function from
the dplyr tidyverse package. Let’s practice with the data from Song et al. (2020) you read
in Chapter 9. We want to get a measure of central tendency and dispersion for the reaction
times, in the RT column. In order to decide which measures to pick, think about the nature
of the RT variable. Reaction times is a numeric and continuous statistical variable, and it can
only have positive values. So the mean and standard deviations are appropriate measures.
Let’s start with the mean of the reaction time column RT. Go to your week-02.R script: if you
followed Chapter 9 (and you should have), the script should already have the code to attach
the tidyverse and read the song2020/shallow.csv file into a variable called shallow.

Now let’s calculate the mean of RT with summarise(). The summarise() function takes at
least two arguments: (1) the tibble to summarise, (2) one or more summary functions applied
to columns in the tibble. In this case we just want the mean RTs. To get this, you write
RT _mean = mean(RT) which tells the function to calculate the mean of the RT column and
save the result in a new column called RT_mean. Yes, summarise() returns a tibble (a data
frame)! It might seem overkill now, but you will see below that it is useful when you are
grouping the data, so that for example you can get the mean of different groups in the data.
Here is the code with its output:

summarise(shallow, RT_mean = mean(RT))

A tibble: 1 x 1
RT_mean
<dbl>

101

https://dplyr.tidyverse.org

1 867.

Great! The mean reaction times of the entire sample is 867.3592 ms. Sometimes you might
want to round the numbers. You can round numbers with the round () function. For exam-
ple:

num <- 867.3592
round (num)

[1] 867

round (num, 1)

[1] 867.4

round (num, 2)

[1] 867.36

The second argument of the round() function sets the number of decimals to round to (by
default, it is 0, so the number is rounded to the nearest integer, that is, to the nearest whole
number with no decimal values). Let’s recalculate the mean by rounding it this time.

summarise(shallow, RT_mean = round(mean(RT)))

A tibble: 1 x 1
RT_mean
<dbl>
1 867

What if we want also the standard deviation? Easy: we use the sd() function. Round the
mean and SD with the round () function when you write the code in your week-02.R script.

round the mean and SD
summarise(shallow, RT_mean = mean(RT), RT_sd = sd(RT))

Now we know that reaction times are on average 867 ms long and have a standard deviation of
about 293 ms (rounded to the nearest integer). Let’s go all the way and also get the minimum
and maximum RT values with the min() and max() functions (again, round all the summary
measures).

102

Exercise 1

Complete this code to also get the minimum and maximum RT and round all measures
to the nearest integer.

summarise (

shallow,
RT_mean = mean(RT), RT_sd = sd(RT),
RT min = ..., RT_max = ...

)

Solution

The functions for minimum and maximum are just a few lines above! Have you tried it
yourself before seeing the solution?
Show me

summarise (
shallow,
RT_mean = round(mean(RT)), RT_sd = round(sd(RT)),
RT min = round(min(RT)), RT _max = round(max(RT))
)

Fab! When writing a data report, you could write something like this.

Reaction times are on average 867 ms long (SD = 293 ms), with values ranging
from 0 to 1994 ms.

Remember that standard deviations are a relative measure of how dispersed the data are around
the mean: the higher the SD, the greater the dispersion around the mean, i.e. the greater the
variability in the data. However, you won’t be able to compare standard deviations across
different measures: for example, you can’t compare the standard deviation of reaction times
and of vowel formants because the first is in milliseconds and the second in Hertz; these are
two different numeric scales. When required, you can use the median() function to calculate
the median, instead of the mean(). Go ahead and calculate the median reaction times in the
data. Is it similar to the mean?

Exercise 2

Calculate the median of RTs in the shallow data.

103

11.2 NA: Not Available

Most base R functions, like mean(), sd(), median() and so on, behave unexpectedly if the
vector they are used on contains NA values. NA is a special object in R, that indicates that
a value is Not Available, meaning that that observation does not have a value (or that the
value was not observed in that case). For example, in the following numeric vector, there are
5 objects:

a <- c(3, 5, 3, NA, 4)

Four are numbers and one is NA. If you calculate the mean of a with mean () something strange
happens.

mean (a)

[1] NA

The functions returns NA. This is because by default when just one value in the vector is NA
then operations on the vector will return NA.

mean(a)

[1] NA

sum(a)

[1] NA

sd(a)

[1] NA

If you want to discard the NA values when operating on a vector that contains them, you have
to set the na.rm (for “NA remove”) argument to TRUE.

mean(a, na.rm = TRUE)

[1] 3.75

104

sum(a, na.rm = TRUE)

[1] 15

sd(a, na.rm = TRUE)

[1] 0.9574271

Quiz 1
a. What does the na.rm argument of mean() do?
e (A) It changes NAs to FALSE.
e (B) It converts NAs to Os.
o (C) It removes NAs before taking the mean.

b. Which is the mean of c(4, 23, NA, 5) when na.rm has the default value?

o (A) NA

. (B) 0

o (C) 10.66.
Hint

Check the documentation of ?mean.

11.3 Grouping data with group_by()

More often, you will want to calculate summary measures for specific subsets of the data. An
elegant way of doing this is with the group_by () function from dplyr. This function takes a
tibble, groups the data based on the specified columns, and returns another tibble with the
grouping.

105

shallow_g <- group_by(shallow, Group)

It looks as if nothing happened, but now the rows in the shallow_g tibble are grouped de-
pending on the value of Group (L1 or L2). If you print out the tibble in the console (just
write shallow_g in the Console and press enter), you will notice that the second line of the
output says Groups: Group [2], like in the output below. This line tells you how the tibble
is grouped: here it is grouped by Group and there are two groups.

A tibble: 6,500 x 11
Groups: Group [2]

Group ID List Target ACC RT logRT Critical_Filler Word_Nonword
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr>
1 L1 L1 01 A banoshment 1 423 6.05 Filler Nonword
2 L1 L1 01 A unawareness 1 603 6.40 Critical Word
3 L1 L1 01 A unholiness 1 739 6.61 Critical Word
4 L1 L1 01 A bictimize 1 510 6.23 Filler Nonword
5 L1 L1_01 A unhappiness 1 370 5.91 Critical Word
6 L1 L1 01 A entertainer 1 689 6.54 Filler Word
7 L1 L1_01 A unsharpness 1 821 6.71 Critical Word
8 L1 L1 01 A fersistent 1 677 6.52 Filler Nonword
9 L1 L1_01 A specificity 0 798 6.68 Filler Word
10 L1 L1 01 A termination 1 610 6.41 Filler Word

i 6,490 more rows
1 2 more variables: Relation_type <chr>, Branching <chr>

The grouping information is stored as an “attribute” in the tibble, named groups. You can
check this attribute with attr(). You get a tibble with the groupings. Hopefully now you
understand that, even if nothing seems to have happened, the tibble has been grouped. Since
you saved the output of group_by() into a new variable shallow_g, note that shallow was
not affected (try running attr(shallow, "groups") and you will get a NULL). Here’s the
output:

A tibble: 2 x 2

Group .TOWS
<chr> <list<int>>
1 L1 [2,900]
2 L2 [3,600]

There are 2,900 rows in Group = L1 and 3,600 rows in Group = L2. Now let’s take the
shallow_g data and calculate summary measures for L1 and L2 participants separately (as
per the Group column).

106

Exercise 3

Get the rounded mean, median, SD, minimum and maximum of RTs for L1 and L2
participants in shallow_g.

Solution

You can do it! You’ve done this above but with shallow. Now you just need to use
shallow_g plus get the mininimum and maximum.
Show me

summarise (
shallow_g,
mean = round(mean(RT)),
median = round(median(RT)),
sd = round(sd(RT))

This way of grouping the data first with group_by () first and then using summarise () on the
grouped tibble works, but it can become tedious if you want to get summaries for different
groups and/or combinations of groups. There is a more succinct way of doing this using the
pipe |>. Read on to learn about it.

11.3.1 What the pipe!?

Think of a pipe |> as a teleporter. The pipe |> teleports whatever is on its left into whatever
is on its right. The pipe allows you to “stack” multiple operations into a pipeline, without
the need to assign each output to a variable. This means that the code is more succinct and
even more readable because the way you write code follows exactly the pipeline. So we can
get summary measures for each group in Group like so:

shallow |>
group_by(Group) |>
summarise(mean = round(mean(RT)))

A tibble: 2 x 2
Group mean
<chr> <dbl>

111 789

2 L2 930

The code says:

107

o Take the shallow data.
e Pipe it into group_by () and group it by Group.
e Summarise the grouped data with summarise().
Hopefully this just makes sense, but check the R Note box below if you want more details.

group_by () can group according to more than one column, by listing the columns separated
by commas (like group_by(Coll, Col2, Col3)). When you list more than one column, the
grouping is fully crossed: you get a group for each combination of the grouping columns. Try
to group the data by Group and Word_Nonword and get summary measures.

Exercise 4

Group shallow by Group and Word_Nonword and get summary measures of RTs. Use
the pipe.

Hint

group_by (Group, Word_Nonword)

11.4 Counting observations with count ()

If you want to count observations you can use the summarise() function with n(), another
dplyr function that returns the group size. For example, let’s count the number of languages
by their endangerment status. The data in coretta2022/glot_status.rds contains the en-
dangerment status for 7,845 languages from Glottolog. There are thousands of languages in
the world, but most of them are losing speakers, and some are already no longer spoken. The
column status contains the endangerment status of a language in the data, on a scale from not
endangered (languages with large populations of speakers) through threatened, shifting
and nearly extinct, to extinct (languages that have no living speakers left). Read the
coretta2022/glot_status.rds data and check it out.

To count the number of languages by status, we group the data by status and we summarise

with n().

glot_status [>
group_by(status) |[>
summarise(n = n())

A tibble: 6 x 2
status n

108

https://glottolog.org

<fct> <int>

1 not_endangered 2956
2 threatened 1537
3 shifting 1837
4 moribund 414
5 nearly_extinct 351
6 extinct 1250

This approach works. However, dplyr offers a more compact way to get counts with the
count () function! You can think of this function as a group_by/summarise combo. You list
the columns you want to group by as arguments to count () and the output gives you a column
n with the counts. It works with a single column or more than one, like group_by ().

glot_status [|>
count (status)

A tibble: 6 x 2

status n

<fct> <int>
1 not_endangered 2956
2 threatened 1537
3 shifting 1837
4 moribund 414
5 nearly_extinct 351
6 extinct 1250

Exercise 5

Get the number of languages by status and Macroarea.

R Note: Piping

With the release of R 4.1.0, a new feature was introduced to the base language that
has significantly improved the readability and expressiveness of R code: the native pipe
operator, written as |>. The native pipe allows the result of one expression to be
passed automatically as the first argument to another function. This simple idea has a
profound impact on how we write R code, particularly when we are performing a sequence
of data transformations.

Before the native pipe, it was common to see deeply nested function calls that could
be difficult to read and reason about. For example, consider the task of computing the
square root of the sum of a vector:

109

sqrt(sum(c(1, 2, 3, 4)))

While this is relatively simple, as functions become more complex and more transforma-
tions are chained together, nested calls quickly become cumbersome. The native pipe
solves this by allowing you to write each operation in a left-to-right, stepwise manner,
which mirrors the logical flow of data. The key principle of the native pipe is that the
left-hand side (LHS) is evaluated first, and its result is automatically passed as the
first argument to the right-hand side (RHS). This means that for a simple pipe like:

x [>£0
it is equivalent to writing:
f(x)

This principle is important because it defines the natural behavior of the pipe: whatever
computation you produce on the LHS will be injected as the first input to the next
function. Consider the mtcars dataset, which is built into R. Suppose we want to compute
the average miles per gallon (mpg) for each number of cylinders (cyl). Using the native
pipe in combination with tidyverse functions, the code is straightforward and highly
readable:

library (dplyr)

mtcars |>
group_by(cyl) |[>
summarise (avg_mpg = mean (mpg))

Let’s break this down:

1. The mtcars dataset is the left-hand side. It is evaluated first and becomes the input
for the next function.

2. group_by(cyl) receives the dataset as its first argument, groups the data by the
cyl column, and returns a grouped dataframe.

3. The grouped dataframe is then piped into summarise(avg_mpg = mean(mpg)),
which calculates the mean mpg for each cylinder group.

Notice that each step receives the output from the previous step as its first argument.
This eliminates the need for intermediate variables and nested function calls, creating a
natural, readable sequence of transformations.

110

Comparison with the magrittr pipe (%>%)

Before R introduced the native pipe, the magrittr package popularized piping with
the %>% operator. Functionally, it achieves a very similar goal: passing the result of
one expression to another function. For example, the earlier group_by and summarise
operation can be written with magrittr as:

library(magrittr)

mtcars %>%
group_by(cyl) %>%
summarise(avg_mpg = mean(mpg))

Some differences between the native pipe and magrittr:

1. The native pipe is built into base R, so no external package is required.

2. The native pipe always passes the LHS value to the first argument of the RHS
function.

3. magrittr allows more flexibility via the . placeholder, which can inject the LHS
value into any argument.

4. Performance-wise, the native pipe has minimal overhead compared to %>%, which
is a function call.

Overall, the native pipe provides a simple, consistent, and readable way to chain oper-
ations, especially when working with tidyverse workflows. For users already familiar
with %>%, the transition is intuitive, with the added benefit that this feature is now a
part of base R.

111

Part 11l

Week 3

112

12 Transform data

Data transformation is a fundamental aspect of data analysis. After the data you need
to use is imported into R, you will often have to filter rows, create new columns, summarise
data or join data frames, among many other transformation operations. In Chapter 11 you
have already learned about summarising data, and in this chapter you will learn how to use
filter () to filter the data and mutate () to mutate or create new columns.

12.1 Filter rows

Filtering is normally used to filter rows in the data according to specific criteria: in
other words, keep certain rows and drop others. Filtering data couldn’t be easier with
filter (), from the dplyr package (one of the tidyverse core packages), Let’s work with the
coretta2022/glot_status.rds data. Below you can find a preview of the data. Create a new
R script called week-03.R and save it in code/. Read the coretta2022/glot_status.rds
data.

glot_status

A tibble: 8,345 x 18

ID Language_ID Parameter_ID Value Code_ID Comment Source codeReference
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <1lgl>
kolp1236~ kolpl1236 aes aes-sh~ Kol (1~ hh:he~ NA
tanal288~ tanal288 aes aes-sh~ Tanahm~ hh:he~ NA
touo1238~ touol238 aes aes-sh~ Touo (~ hh:he~ NA
bert1248~ bert1248 aes aes-sh~ Fadash~ hh:he~ NA
sius12b54~ sius1254 aes aes—ex~ Siusla~ hh:he~ NA
cent2045~ cent2045 aes aes—-ex~ Jalaa ~ <NA> NA
elsel239~ elsel239 aes aes-sh~ Elseng~ hh:he~ NA
taial239~ taial239 aes aes-mo~ Taiap ~ hh:he~ NA
pyuul245~ pyuul245 aes aes-sh~ Pyu (4~ hh:he~ NA

10 matol1253~ matol1253 aes aes—-ex~ Arara ~ hh:he~ NA

i 8,335 more rows

i 10 more variables: status <fct>, Name <chr>, Macroarea <chr>,

Latitude <dbl>, Longitude <dbl>, Glottocode <chr>, IS0639P3code <chr>,

© 0 NO Ok WN -
D WPk WO oW www

113

https://dplyr.tidyverse.org

#

Countries <chr>, Family_ID <chr>, Language_ID.y <chr>

In the following sections we will filter the rows of the data based on the status column. Before
we can move on onto filtering however, we first need to learn about logical operators.

12.1.1 Logical operators

Logical operators

Logical operators are symbols that compare two objects and return either TRUE or
FALSE.
The most common logical operators are ==, !=, > and <.

There are four main logical operators, each testing a specific logical statements:

X

X

X

X

== y: x equals y.
I= y: x is not equal to y.
> y: x is greater than y.

< y: x is smaller than y.

Logical operators return TRUE or FALSE depending on whether the statement they convey is
true or false. Remember, TRUE and FALSE are logical values.

Try the following code in the Console:

This will return FALSE

1 ==2

[1] FALSE

FALSE
"apples" == "oranges"

[1] FALSE

TRUE

10 > 5

[1] TRUE

114

FALSE
10 > 15

[1] FALSE

TRUE
3 <4

[1] TRUE

Quiz 1
a. Which of the following does not contain a logical operator?

e (A)3>1

.« (C) "p" 1= "p"
. (D) 19 < 2

b. Which of the following returns ¢ (FALSE, TRUE)?

(A) 3> c(1, 5)

(B) c("a", ") 1= c("a")

e (C) "apple" != "apple"
Hint
1a.
Check for errors in the logical operators.
1b.

Run them in the console to see the output.

115

Explanation

la.

The logical operator == has TWO equal signs. A single equal sign = is an alternative way
1 and a <- 1 are equivalent.

of writing the assignment operator <-, so that a

1b.

Logical operators are “vectorised” (you will learn more about this below), i.e they are
applied sequentially to all elements in pairs. If the number of elements on one side does
not match than of the other side of the operator, the elements on the side that has the
smaller number of elements will be recycled.

You can use these logical operators with filter() to filter rows that match with TRUE in all
the specified statements with logical operators.

12.1.2 The filter () function

Filtering in R with the tidyverse is straightforward. You can use the filter () function.
filter() takes one or more statements that return TRUE or FALSE. A common use case is
with logical operators. The following code filters the status column so that only the extinct
status is included in the new data frame extinct. You’ll notice we are using the pipe |> to
transfer the data into the filter () function (you learned about the pipe in Chapter 11). The
output of the filter function is assigned <- to extinct. The flow might seem a bit counter-
intuitive but you will get used to think like this when writing R code soon enough (although

see the R Note box on assignment direction)!

extinct <- glot_status |[>

filter(status == "extinct")

extinct

A tibble: 1,250 x 18

ID Language_ID Parameter_ID
<chr> <chr> <chr>

1 sius1254~ sius1254 aes

2 cent2045~ cent2045 aes

3 matol253~ matol253 aes

4 kunz1244~ kunz1244 aes

5 atac1235~ atac1235 aes

6 beot1247~ beotl1247 aes

7 kenal236~ kenal236 aes

8 omurl1241~ omuril241 aes

9 garr1260~ garr1260 aes

Value Code_ID

<chr> <chr>

()N e>INe) o) o) Bie) B o) B o) Be)

116

aes—ex~
aes—ex~
aes—ex~
aes—ex~
aes—ex~
aes—ex~
aes—ex~
aes—ex~
aes—ex~

Comment
<chr>

Siusla~
Jalaa ~
Arara ~
Atacam~
Atacam~
Beothu~
Kenabo~
Omuran~
Garawa~

Source
<chr>
hh:he~
<NA>
hh:he~
hh:he~
<NA>
<NA>
hh:he~
hh:h:~
<NA>

codeReference
<lgl>
NA

NA

NA

NA

NA

NA

NA

NA

NA

10 vilel241~ vilel241 aes 6 aes—-ex~ Vilela~ hh:he~ NA

i 1,240 more rows

i 10 more variables: status <fct>, Name <chr>, Macroarea <chr>,

Latitude <dbl>, Longitude <dbl>, Glottocode <chr>, IS0639P3code <chr>,
Countries <chr>, Family_ID <chr>, Language_ID.y <chr>

Neat! extinct contains only those languages whose status is extinct. What if we want to
include all statuses except extinct? Easy, we use the non-equal operator !=.

not_extinct <- glot_status |[>
filter(status != "extinct")

not_extinct contains all languages whose status is not extinct. And if we want only non-
extinct languages from South America? We can include multiple statements separated by a
comma/!

south_america <- glot_status |[>
filter(status !'= "extinct", Macroarea == "South America")

Combining statements like this will give you only those rows where all statements return TRUE.
You can add as many statements as you need.

Important

If you don’t assign the output of filter() to a variable (like in south_america <-),
the resulting tibble will be printed in the Console and you won’t be able to do more
operations on it! Always remember to assign the output of filtering to a new variable
and to avoid overwriting the full tibble, use a different name.

Exercise 1

Filter the glot_status data so that you include only not_endangered languages from
all macro-areas except Eurasia.

This is all great, but what if we want to include more than one status or macro-area? To do
that we need another operator: %in¥%.

117

12.1.3 The %inJ operator

%in,

The %in% operator is a special logical operator that returns TRUE if the value to the left
of the operator is one of the values in the vector to its right, and FALSE if not.

Try these in the Console:
TRUE
5 %in% c(1, 2, 5, 7)

[1] TRUE

FALSE
"apples" %in% c("oranges", "bananas")

[1] FALSE

But %in’% is even more powerful because the value on the left does not have to be a single
value, but it can also be a vector! We say %in is vectorised because it can work with vectors
(most functions and operators in R are vectorised).

TRUE, TRUE
c(l, 5) %in% c(4, 1, 7, 5, 8)

[1] TRUE TRUE

stocked <- c("durian", "bananas", "grapes")
needed <- c("durian", "apples")

TRUE, FALSE
needed %inY, stocked

[1] TRUE FALSE

Try to understand what is going on in the code above before moving on.

Now we can filter glot_status to include only the macro-areas of the Global South and only

W

languages that are either “threatened”, “shifting”, “moribund” or “nearly_ extinct”.

118

Exercise 2

Filter glot_status to include only the macro-areas (Macroarea) of the Global South and
PV AN1S

only languages that are either “threatened”, “shifting”, “moribund” or “nearly_ extinct”.
I have started the code for you, you just need to write the line for filtering status.

global_south <- glot_status |>
filter(
Macroarea %inJ, c("Africa", "Australia", "Papunesia", "South America"),

This should not look too alien! The first statement, Macroarea %in}% c("Africa",
"Australia", "Papunesia", "South America") looks at the Macroarea column and,
for each row, it returns TRUE if the current row value is in c("Africa", "Australia",
"Papunesia", "South America"), and FALSE if not.

Solution

global_south <- glot_status |>

filter(
Macroarea %inJ, c("Africa", "Australia", "Papunesia", "South America"),
status %in)% c("threatened", "shifting", "moribund", "nearly_extinct")
)

12.2 Mutate columns

To change existing columns or create new columns, we can use the mutate () function from the
dplyr package. To learn how to use mutate (), we will re-create the status column (let’s call
it Status this time) from the Code_ID column in glot_status. The Code_ID column contains
the status of each language in the form aes-STATUS where STATUS is one of not_endangered,
threatened, shifting, moribund, nearly_extinct and extinct. You can check the labels
in a column with the unique() function. This function is not from the tidyverse, but it is
a base R function, so you need to extract the column from the tibble with $ (the dollar-sign
operator). unique() will list all the unique labels in the column (note that it works with
numbers t0o0).

unique(glot_status$Code_ID)

[1] "aes-shifting" "aes-extinct" "aes-moribund"

119

https://dplyr.tidyverse.org

[4] "aes-nearly_extinct" "aes-threatened" "aes-not_endangered"

The dollar sign ‘$¢

You can use the dollar sign $ to extract a single column from a data frame as a vector.

We want to create a new column called Status which has only the status part of the label
without the aes- part. To remove aes- from the Code_ID column we can use the str_remove ()
function from the stringr package. Check the documentation of ?str_remove to learn which
arguments it uses.

glot_status <- glot_status |>
mutate (
Status = str_remove(Code ID, "aes-")

If you check glot_status now you will find that a new column, Status, has been added. This
column is a character column (chr). You see that, as with filter (), you have to assign the
output of mutate() to a variable. In the code above we are re-assigning the output to the
glot_status variable which we started with. This means that we are overwriting the original
glot_status. However, since we have added a new column, we have in practice only added the
new column to the old data. If you use the name of an existing column, you will be effectively
overwriting that column, so you must be careful with mutate().

Let’s count the number of languages for each endangerment status using the new Status
column. You learned about the count () feature in Chapter 11.

glot_status |[>
group_by(Status) |>
count ()

A tibble: 6 x 2
Groups: Status [6]
Status n
<chr> <int>
1 extinct 1250
2 moribund 414
3 nearly_extinct 351
4 not_endangered 2956
5 shifting 1837
6 threatened 1537

120

https://stringr.tidyverse.org

You might have noticed that the order of the levels of Status does not match the order from
least to most endangered/extinct. Try count() now with the pre-existing status column
(with a lower case “s”). You will get the sensible order from least to most endangered/extinct.
Why? This is because status (the pre-existing column) is a factor column with a specified
order of the different statuses. A factor column is a column that is based on a factor vector
(note that tibble columns are vectors), i.e. a vector that contains a list of values, called levels,
from a specified set. Factor vectors (or factors for short) allow the user to specify the order of
the values. If the order is not specified, the alphabetical order is used by default. Differently
from factor vector/columns, character columns (columns that are character vectors) can only
use the default alphabetical order. The Status column we created above is a character column.
Check the column type by clicking on the small white triangle in the blue circle next to the
name of the tibble in the Environment panel (tip-right panel of RStudio). Next to the Status
column name you will see chr, for character. But if you look next to status you will see
Factor.

Factor vector

A factor vector (or column) is a vector that contains a list of values (called levels) from
a closed set.
The levels of a factor are ordered alphabetically by default.

A vector/column can be mutated into a factor column with the as.factor() function. In the
following code, we change the existing column Status, in other words we overwrite it (this
happens automatically, because the Status column already exists, so it is replaced).

glot_status <- glot_status |>
mutate(
Status = as.factor(Status)

levels(glot_status$Status)

[1] "extinct" "moribund" "nearly_extinct" "not_endangered"
[5] "shifting" "threatened"

The levels () functions returns the levels of a factor column in the order they are stored in the
factor: as mentioned above, by default the order is alphabetical. What if we want the levels
of Status to be ordered in a more logical manner: not_endangered, threatened, shifting,
moribund, nearly_extinct and extinct? Easy! We can use the factor () function instead
of as.factor () and specify the levels and their order in the levels argument.

121

glot_status <- glot_status |[>
mutate (
Status = factor(
Status,

levels = c("not_endangered", "threatened", "shifting", "moribund", "nearly_extinct",

)

levels(glot_status$Status)

[1] "not_endangered" "threatened"
[6] "nearly_extinct" "extinct"

"shifting" "moribund"

You see that now the order of the levels returned by levels () is the one we specified. Trans-
forming character columns to vector columns is helpful to specify a particular order of the
levels which can then be used when summarising, counting or plotting.

Exercise 3

Use count () again with the new factor Status column.

Here is a preview of data plotting in R, which you will learn in Chapter 15, with the status in
the logical order from least to most endangered and extinct.

glot_status |>
ggplot(aes(x = Status)) +
geom_bar ()

122

3000 -

2000 -

. I

not_endangered threatened shifting moribund nearly_extinct extinct
Status

count

Figure 12.1: Number of languages by endangerment status (repeated).

R Note: Assignment direction

R has two assignment operators: the assignment arrow <- and =. Current R coding
practices favour <- over =, hence this book uses exclusively the former. Both have
the same assignment direction: the object to the right of the operator is assigned to the
variable name to the left of the operator. This is virtually how all programming languages
work.

It is less known, however, that the assignment arrow can be “reversed”, -> so that
assignment goes from left to right. The following are equivalent.

a <- 2
2 -> a

We could re-write the mutate code above like this:

glot_status |[>

mutate (
Status = factor(
Status,
levels = c("not_endangered", "threatened", "shifting", "moribund", "nearly_extinct",
)

) -> glot_status

123

The code fully follows the flow: you take glot_status, you pipe it into mutate, you
create a new column, you assign the output to glot_status.
However, I don’t particularly encourage this practice because it makes spotting variable

assignment in your scripts more difficult, now that the variable is assigned at the end of
the pipeline.

124

13 Quarto

Before moving onto data visualisation, it is time now to step up your coding organisation skills.
Keeping track of the code you use for data analysis is a very important aspect of research
project managing: not only the code is there if you need to rerun it later, but it allows your
data analysis to be reproducible (i.e., it can be reproduced by you or other people in such a
way that starting with the same data and code you get to the same results).

Reproducible research

Research is reproducible when the same data and same code return the same results.

You will learn about reproducibility and related concepts in more details in Chapter 33. R
scripts are great for writing code, and you can even document the code (add explanations
or notes) with comments (i.e. lines that start with #). But for longer text or complex data
analysis reports, R scripts can be a bit cumbersome. A solution to this is using Quarto files
(they have the .gmd extension).

13.1 Code... and text!

Quarto is a file format that allows you to mix code and formatted text in the same file. This
means that you can write dynamic reports using Quarto files: dynamic reports are just like
analysis reports (i.e. they include formatted text, plots, tables, code output, code, etc...) but
they are dynamic in the sense that if, for example, data or code changes, you can just rerun
the report file and all code output (plots, tables, etc...) is updated accordingly!

Dynamic reports in Quarto

Quarto is a file type with extension .qmd in which you can write formatted text and
code together.

Quarto can be used to generate dynamic reports: these are files that are generated
automatically from the file source, ensuring data and results in the report are always up
to date.

125

https://quarto.org

13.2 Formatting text

R comments in R scripts cannot be formatted (for example, you can’t make text bold or italic).
Text in Quarto files can be fully formatted using a simple but powerful mark-up language
called Markdown. You don’t have to learn markdown all in one go, so I encourage you to just
learn it bit by bit, at your pace. You can look at the the Markdown Guide for an in-depth
intro and/or dive in the Markdown Tutorial for a hands-on approach.

A few quick pointers (you can test them in the Markdown Live Preview):

e Text can be made italics by enclosing it between single stars: #*this text is in
italics*.

¢ You can make text bold with two stars: **this text is bold!*x.

o Headings are created with #:
This is a level-1 heading

This is a level-2 heading

Mark-up, Markdown

A mark-up language is a text-formatting system consisting of symbols or keywords
that control the structure, formatting or relationships of textual elements. The most
common mark-up languages are HTML, XML and TeX.
Markdown is a simple yet powerful mark-up language.

13.3 Create a .qnmd file

Important

When working through these tutorials, always make sure you are in the course
Quarto Project you created before. You know you are in a Quarto Project because you
can see the name of the Project in the top-right corner of RStudio, next to the light-blue
cube icon. If you see Project (none) in the top-right corner, that means you are not
in the Quarto Project.

To make sure you are in the Quarto project, you can open the project by going to the
project folder in File Explorer (Windows) or Finder (macOS) and double click on the
.Rproj file.

126

https://www.markdownguide.org
https://www.markdownguide.org/getting-started/
https://www.markdowntutorial.com
https://markdownlivepreview.com

To create a new .qmd file, just click on the New file button (the white square with the green
plus symbol), then Quarto Document.... (If you are asked to install/update packages, do
s0.)

g - % & - # Go to file/function

A R script ©8N

| L
& Qquarto bocument... n Save N Render

PYIN NaAarmal _ H 1

- _ .
Quarto Presentation... Create a new Quarto document
11 yUu SEC rroject (I‘IO

B R Notebook

Quarto Project.
2 R Markdown...

A window will open. Add a title of your choice and your name. Make sure the Use visual
markdown editor is NOT ticked, then click Create (you will be free to use the visual editor
later, but it is important that you first see what a Quarto document looks like under the hood

first).

127

New Quarto Document

| Document Title: My first Quarto document

CJ Presentation Author: | Stefano Corettd

R Interactive
® HTML

Recommended format for authoring (you can switch to
PDF or Word output anytime)

O PDF

PDF output requires a LaTeX installation (e.g.
https://yihui.org/ftinytex/)

O Word

Previewing Word documents requires an installation of
MS Word (or Libre/Open Office on Linux)

Engine: Knitr v

(7) Learn more about Quarto

Create Empty Document Create Cancel

A new .qmd file will be created and will open in the File Editor panel in RStudio.

Note that creating a Quarto file does not automatically save it on your computer. To do so,
either use the keyboard short-cut CMD+S/CTRL+S or click on the floppy disk icon in the menu
below the file tab.

128

9-% &- 2 3 & | A Go to fileffunction == - Addins -

P Render on Save ® .-k Rende
: .Y | 4

Source Visual

. "My first Quarto document"
. "Stefano Coretta"

Save the file inside the code/ folder with the following name: week-03.qgmd.

Remember that all the files of your RStudio project don’t live inside RStudio but on your
computer.

13.3.1 Parts of a Quarto file

A Quarto file usually has three main parts:

o The YAML header (green in the screenshot below).
o Code chunks (red).
o Text (blue).

129

. quarto.gmd |
@ A @ Render on Save ® | =) Render % - %@ - ¢ § E'Run- Publish ~
-

Source Visual

Title
: "My first Quarto document" Attach packages
setup
Read data
gestures

. "Stefano Coretta"

To begin with, we should attach the tidyverse packages.

1 setup

(tidyverse)

In the following code chunk with read a few data frames.

I gestures

gestures <- read_csv("data/cameron2020/gestures.csv")

glot_status <- readRDS("data/coretta2022/g9lot_status.rds")

The data frames are:

- ‘gestures® with infant gesture data from @cameron2020.
- ‘g9lot_status® with data on the endangerment status of languages from
Glottolog.

B Read data =

Each Quarto file has to start with a YAML header, but you can include as many code chunks
and as much text as you wish, in any order. You can also show the document outline, marked
as a dashed yellow box in the figure above. To show/hide the outline, just click on the Qutline
button. See the R Note box below for tips.

Quarto: YAML header

The header of a .qmd file contains a list of key: value pairs, used to specify settings
or document info like the title and author.
YAML headers start and end with three dashes —-—-.

130

Quarto: Code chunks

Code chunks start and end with three back-ticks ~~~ and they contain code.

{r} indicates that the code is R code. Settings can be specified inside the chunk with
the #| prefix: for example #| label: setup sets the name of the chunk (the label) to
setup.

R Note: Quarto outline and chunk labels

By default, the Quarto outline only shows the Markdown section headers. I find it very
useful to also see the code chunks in the outline and if they have a label, that will be
shown in italics. It makes navigating long documents very easy and clear, descriptive
chunk labels sure help.

To enable code labels in the outline, go to Global Options > R Markdown > Basic panel
> Show in document outline: Sections and all chunks.

131

Options

] . R)
General | Basic | Advanced Visual Citations
Code R Markdown

v Soft-wrap R Markdown files

> Console o
v Show output inline for all R Markdown documents

"ﬂ Appearance Show output preview in:

Pane Layout Show equation and image previews: | Inline v
| Packages Evaluate chunks in directory:
R Markdown Document Outline
'g Show document outline by default
Python —
Show in document outline: [Sections and All Chunks v]
@'L Sweave ——
Document outline font size: D
"% Spellin
£ P 9 R Notebooks
‘ Git/SVN v Execute setup chunk automatically in notebooks

'C:f Publishing v Hide console automatically when executing notebook chunks

- Terminal

6 Accessibility

O Copilot

?) Using R Notebooks

OK Cancel Apply

13.3.2 Working directory

When using Quarto projects, the working directory (the directory all relative paths are relative
to) is the project folder. However, when running code from a Quarto file, the code is run as
if the working directory were the folder in which the file is saved. This isn’t an issue if the
Quarto file is directly in the project folder, but in our case our Quarto files live in the code/
folder within the project folder (and it is good practice to do so!). We can instruct R to always
run code from the project folder (i.e. the working directory is the project folder). This is when
the _quarto.yml file comes into play.

Open the _quarto.yml file in RStudio (you can simply click on the file in the Files tab and
that will open the file in the RStudio editor). Add the line execute-dir: project under

132

the title. Note that indentation should be respected, so the line you write should align with
title:, not with project:.

project:
title: "gml-2024"
execute-dir: project

Now, all code in Quarto files, no matter where they are saved, will be run with the project
folder as the working directory.

13.4 How to add and run code

You will use the Quarto document you created to write text and code in this chapter. Delete
everything in the Quarto document below the YAML header. It’s just example
text—we’re not attached to it! This is what the Quarto document should look like now (if
your YAML header also contains “format:html, that’s completely fine):

. quarto.gmd -]
@ A @ Render on Save ®) Render % - % - 4+ 4 BRun- Publish ~
Source Visual = Outline
(RS --- Title
: "My first Quarto document"
. "Stefano Coretta"

6:1 (Top Level) = Quarto <

133

Now add an empty line and in the following line

packages, followed by two empty lines. Like so:

. quarto.gmd
- A

Source Visual

B Render on Save ®) Render % -

’| —_———
: "My first Quarto document"
! "Stefano Coretta"

8:1 # Attach packages =

write a second-level heading ## Attach

=0
Publish ~

% - 4 § ERun-

= Outline

Title
Attach packages

Quarto

Now we can insert a code chunk to add the code to attach the tidyverse. To insert a new code
chunk, you can click on the Insert a new code chunk button (the little green square icon
with a C and a plus) , or you can press OPT+CMD+I/ALT+CTRL+I.

134

. quarto.gmd =]
@ A B Render on Save ®) Render £ - % - 4 3 ERun - Publish ~
Source Visual Outline

: "My first Quarto document"
. "Stefano Coretta"

9:1 € Chunk1 < Quarto <

A new R code chunk will be inserted at the text cursor position. Now go ahead and add the
following lines of code inside the R code chunk.

#| label: setup

library(tidyverse)

To run the code, you have two options:

¢ You click the small green triangle in the top-right corner of the chunk. This runs all the
code in the code chunk.

e Ensure the text cursor is inside the code chunk and press SHIFT+CMD+ENTER/SHIFT+CTRL+ENTER.
This too runs all the code in the code chunk.

If you want to run line by line in the code chunk, you can place the text cursor on the line you
want to run and press CMD+ENTER/CTRL+ENTER. The current line is run and the text cursor is
moved to the next line. Just like in the .R scripts that we’ve been using in past weeks. Run
the setup chunk now.

135

. quarto.gmd -]
@ AR B Render on Save ® | =) Render % - %8 - 4 3§ ERun- Publish ~
Source Visual Outline

Title
i "My first Quarto document" Attach packages
setup
Read data
gestures

. "Stefano Coretta"

0 N4 oo V1A WRN

I setup
(tidyverse)

&
— Attaching core tidyverse packages ———— — tidyverse 2.0.0 —
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.2 v tibble 3.3.0
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.1.0

— Conflicts —MM M +tidyverse_conflicts() —
dplyr::filter() masks stats::filter()
dplyr::lag() masks stats::ilag()

i Use the conflicted

121 € Chunk 1: setup Quarto <

You will see messages printed below the code chunk, in your Quarto file (don’t worry about the
Conflicts, they just tell you that some functions from the tidyverse packages have replaced
the base R functions, which is OK). Now, complete the following tasks before moving on.

o Create a new second-level heading (with ##) called Read data.
o Create a new R code chunk.
o Set the label of the chunk to read-data.

e Add code to read the following files (hint: think about where these files are located
relative to the working directory, that is, the project folder). Assign the datasets to the
variable names polite and glot_status respectively.

— winter2012/polite.csv

— coretta2022/glot_status.rds

¢ Run the code.

136

13.5 Render Quarto files to HTML

You can render a .qud file into a nicely formatted HTML file.

To render a Quarto file, just click on the Render button and an HTML file will be created and
saved in the same location of the Quarto file.

i % & #” Go to file/function ~ |§8 ~ Addins ~

& quarto.amd
- AR @ Render on Save
Source Visual
"My first Quarto document"
"Stefano Coretta"

1
2
3
i
5
6
7
8

To begin with, we should attach the tidyverse packages.

. setup

(tidyverse)

It may be shown in the Viewer pane (like in the picture below) or in a new browser window.
There are a few ways you can set this option to whichever version you prefer. Follow the
instructions that work for you—they all do the same thing.

e Tools > Global Options > R Markdown > Show output preview in..

e Preferences > R Markdown > Basics > Show output preview in..

¢ Right beside the Render button, you will see a little white gear. Click on that gear,
and a drop-down menu will open. Click on Preview in Window or Preview in Viewer
Pane, whichever you prefer.

137

qdal - main - RStudio

a0
Files Plots | P:

@ J A W publish - €

My first Quarto document
AUTHOR
Stefano Coretta

8 To begin with, ue should sttach the tidyverse packages. Attach packages

" To begin with, we should attach the tidyverse packages.
setup

(tidyverse) library(tidyverse)

— Attaching core tidyverse packaggs ———— 88— tidy
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1

In the following code chunk with read a few data frames. ./ ggplot2 3.5.2 ., tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.1.0

— Conflicts tidyverse_
% dplyr::filter() masks stats::filter()

= dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-lib.org/>) to f

Sy
gestures

gestures <-

Read data
In the following code chunk with read a few data frames.
gestures <— read_csv("data/cameron2020/gestures.csv")

utorial] Rows: 1620 Columns: 11

Rendering Quarto files is not restricted to HTML, but also PDFs and even Word documents!
This is very handy when you are writing an analysis report you need to share with others. You
could even write your dissertation in Quarto!

Quarto: Rendering

Quarto files can be rendered into other formats, like HITML, PDF and Word documents.

Now that you have done all of this hard work, why don’t you try and render the Quarto file
you’ve been working on to an HTML file? Click on the Render button and if everything works
fine you should see a rendered HTML file in a second! Note that if you are enrolled in the
QML course, you will be asked to render your Quarto files to PDF for the assessments, so 1
recommend you try this out now by completing the next section.

13.6 Render Quarto files to PDF

Rendering a Quarto file to PDF is done through LaTeX, a typesetting system with it’s own
programming language. You don’t really need to learn LaTeX to render to PDF, because the
conversion is handles by Quarto, but since usually computers don’t come with LaTeX you will
have to install it (you can learn more about LaTeX in the Spotlight box below). Do this now,
by running the following code in the Terminal in RStudio.

138

Important

Note that you are supposed to run the code in the RStudio Terminal, not the RStudio
R console! The RStudio terminal can be found next to the console in the bottom-left
corner of RStudio.

quarto install tinytex

A LaTeX distribution will be installed. Now, add the following lines to the YAML preamble
of your Quarto file and save the file.

format:
html: default
pdf: default

You will see that not there is a small arrow next to the Render button. If you click on it a
drop-down menu will appear, with two options: “HTML” and “PDF”. This is because we have
instructed Quarto that the file should be rendered in two formats in the yaml preamble with
the yaml code above. Click on the PDF option now. If all is well, you should soon see your
Quarto file rendered to PDF!

- % &- Bl & A Gotofile/function - E® . Addins -

& ch-quarto.gmd & quarto.qmd
& AR B Render on Save ® =} Render - £ -

Source Visual ﬁ Render HTML

B Render PDF
"My first Quarto ducumcinic

"Stefano Coretta"

. default
. default

1
2
3
4
5
6
7
8

139

qdal - main - RStudio

—B Console
oh Render - ¥ - - - Publish ~

Help Viewer Presentation
= Outline

e
B Publish ~
(ang 1 o2 — 4+ Automatic Zoom no»

efault
: default

My first Quarto document

Stefano Coretta,
To begin with, we should attach the tidyverse packages.

e Attach packages

t setup o bes iould sttach the tidyverse packages.

(tidyverse)

In the following code chunk with read a few data frames.

{r}
: gestures

6 gestures <- read_csv("dat:

9lot_status <- readRDS
+ 1620 Columns.

The data frames are: L ()

4 Use “ep
* with infant gesture data from Ecameron2020. i Speciey
t 2 o ¢

Spotlight: LaTeX

LaTeX is a mark-up language for writing beautifully typeset documents, like academic
articles and books. It is very popular in disciplines that make heavy use of maths or
statistics and it has been adopted by a lot of researchers working in linguistics, although
adoption rates vary by sub-field.

LaTeX documents are rendered (compiled) to PDF. In other words, you write a document
with extension .tex using LaTeX syntax and the document can be compiled to a PDF.
Typesetting is dealt with by LaTeX so you just need to specify what you want, like
sections, bullet points and so on. This is in the same spirit as Markdown and Quarto.
In computing, this approach is called What You See Is What You Mean (WYSIWYM).
This contrasts with text editors like MS Office Word which are What You See Is What
You Get (WYSIWYG).

You can learn the basics of LaTeX in 30 minutes by following the tutorial Learn LaTeX
in 30 minutes on Overleaf. Overleaf is an online LaTeX editor service, where you can
write and compile LaTeX documents and even collaborate live with other people.

Here is a tiny example of what a LaTeX document looks like.

140

https://en.wikipedia.org/wiki/WYSIWYM
https://en.wikipedia.org/wiki/WYSIWYG
https://en.wikipedia.org/wiki/WYSIWYG
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

\documentclass{article}

\begin{document}

\section{My first LaTeX document}

This is my first LaTeX document. How exciting!

\end{document}

This LaTeX document produces the following PDF. Nothing too exciting, but with LaTeX
you can put together professional-looking and highly technical documents.

1 My first LaTeX document

This is my first LaTeX document. How exciting!

Figure 13.1: A PDF document generated with LaTeX.

If you use Quarto to produce a PDF, you don’t really have to be very proficient in LaTeX
but it helps to know about it, in case something goes wrong with the conversion from
Quarto to PDF.

141

13.7 Summary

e Quarto files can be used to create dynamic and reproducible reports.

e Mark-up languages are text-formatting systems that specify text formatting and
structure using symbols or keywords. Markdown is the mark-up language that is
used in Quarto documents.

e The main parts of a .qgmd file are the YAML header, text and code chunks.

e You can render Quarto files into HI'ML, PDF, Word documents and more.

142

14 Visualisation principles

Area Statistics

Quantitative
analysis

it

As you learned in Chapter 2, quantitative data analysis can be conceived as three activities:
summarising, visualising and modelling data. This chapter introduces you to basic principles
of good data visualisation, while in Chapter 15 you will learn the basics of plotting data in

R.

143

14.1 Good data visualisation

Alberto Cairo has identified four common features of good data visualisation (Spiegelhalter
2019: 64-66):

Good data visualisation
1. It contains reliable information.
2. The design has been chosen so that relevant patterns become noticeable.

3. It is presented in an attractive manner, but appearance should not get in the way
of honesty, clarity and depth.

4. When appropriate, it is organized in a way that enables some exploration.

Let’s see a few examples that illustrate each point. Since you will learn about the plotting
code in the next chapter, the code is not shown by default here, but you can see it by clicking
on the expandable Code button above each plot.

14.2 Information is (not) reliable

Let’s use the coretta2022/glot_status data. to create the plots because you will learn about
it later. The following plot is titled Number of endangered languages by macroarea and status,
but the plot contains both endangered and non-endangered languages.

glot_status %>%

filter(status != "extinct") %>V

gegplot (aes (Macroarea, fill = status)) +

geom_bar() +

scale_fill_brewer(type = "seq", palette = "BuPu") +

labs(
title = "Number of endangered languages by macroarea and status",
caption = "Stacked bar-chart"

)

144

https://www.penguin.co.uk/books/294857/the-art-of-statistics-by-spiegelhalter-david/9780241258767
https://www.penguin.co.uk/books/294857/the-art-of-statistics-by-spiegelhalter-david/9780241258767

Number of endangered languages by macroarea and status

2000 status
not_endangered
- 1500 threatened
% shifting
© 1000 " moribund
. nearly_extinct
500 B exinct

Africa Australia Eurasidorth AmerRapuneSieuth America
Macroarea

Stacked bar—chart

We can fix that by filtering the data so that it contains only endangered languages.

glot_status %>%
filter(status != "extinct") %>Y%
gegplot (aes (Macroarea, fill = status)) +
geom_bar() +
scale_fill_brewer(type = "seq", palette = "BuPu") +
labs(

title = "Number of endangered languages by macroarea and status",
caption = "Stacked bar-chart"

)

145

Number of endangered languages by macroarea and status

2000
status
1500 not_endangered
= threatened
§ 1000 shifting
moribund

nearly_extinct

Africa Australia Eurasidorth AmerRapuneSiauth America
Macroarea

Stacked bar—chart

14.3 Patterns are (not) noticeable

The coretta2021/albvot data contains data on VOT in Albanian. It has data from 6 speakers
(Coretta et al. 2022). The following plot uses a bar chart to show the VOT of different stops,
but what you can’t really see is that there is a lot of variability within and among stops and
within and among speakers.

albvot %>%
filter(consonant %il’l% C(“p", "t", "k", "b", "d“, n ||)) %)%
ggplot (aes(vot, consonant)) +

geom_bar(stat = "identity") +
labs(

title = "Albanian Voice Onset Time"
)

146

consonant

Albanian Voice Onset Time

t B
p N
:]

d _

-1000 0
vot

We can do better. The following plot shows individual measurements of VOT for different
stops and speakers. Now an interesting pattern emerges: speaker 5 (s05) has particularly long
VOT for /t/ and /k/ relative to the other speakers.

albvot %>

filter(consonant %in’% c("p", "t", "k", "b", "d", "\u261")) %>%

mutate(consonant = factor(consonant, levels = rev(c("p", "t", "k", "b", "d", "\u261")))) %
ggplot (aes(consonant, vot, colour = speaker)) +

geom_line(aes(group = interaction(speaker, consonant)), position = position_dodge(width =
geom_point(size = 1.5, alpha = 0.9, position = position_dodge(width = 0.5), aes(group = sp
geom_hline(aes(yintercept = 0)) +

seq(-200, 200, by = 50)) +

scale_y_continuous (breaks
coord_flip() +

labs(

ttile = "Albanian Voice Onset Time",

y = "Voice Onset Time (ms)", x = "Consonant",

caption = "Time O corresponds to the plosive release."
)

147

p () =
co—O

t » speaker
= s01

k =0
s)
2
c -o—- s04
Ob i *—Re
©) -o— s05

q 505 © s06

—a *—=e—
-150 -100 -50 0 50 100

Voice Onset Time (ms)
Time 0O corresponds to the plosive release.

Bar charts are unfortunately overused in research, even in those cases when they are not
appropriate.

14.4 Aesthetics (should not) get in the way

148

https://flowingdata.com/2013/07/15/open-thread-what-is-wrong-with-these-charts/

MOST SPOKEN LANGUAGES

e | () i Tie worLo?
CHINESE 1,026 gt
ENGLISH | 765 oo, BT e e
HINDI 30 352, BT TRRE
ARABICH 353 [Sa0
RUSSIAN = 272 T |
BENGALI 250 i
PORTUGUESE 217 :‘I::L““["m
INDONESIAN 163 Miiet
JAPANESE 123 it

World Languages.

The graph above has a lot of issues:

1. The bar length and thickness are not proportional. Compare Japanese with 123 million

speakers vs English with 765 million speakers.

2.

The graph mixes two scales: million speakers and billion speakers. This makes it look

as if Chinese does not have that many more speakers.

. The shade of orange of the bars does not seem to become proportionally darker with
more speakers. Look at Arabic and Hindi: they have a very similar number of speakers

but one bar is darker than the other.

white men...

. The three dudes speaking are just fillers. Are they really necessary? Also, they are all

Can you find other issues? See more examples on Ugly Charts.

14.5 Does (not) enable exploration

The plot below shows the number

of gestures enacted by infants of English, Bengali and
Chinese background as recorded during a controlled session (Cameron-Faulkner et al. 2020).
Three different types of gestures are shown: hold out and give gestures (ho_gv), index-finger

149

https://flowingdata.com/2013/07/15/open-thread-what-is-wrong-with-these-charts/
https://flowingdata.com/category/visualization/ugly-visualization/

pointing (point) and reach out gestures (reach). Moreover the plot shows the number of
gestures at 10 and 12 months.

gestures %>%
filter (months %in% c(10, 12)) %>%
drop_na(count) %>%
group_by(months, background, gesture) %>
summarise (

count_sum = sum(count), .groups = "drop"

) h>%
ggplot(aes(as.factor(months), count_sum, fill = background)) +
geom_bar(stat = "identity") +
facet_grid(background ~ gesture) +
scale_fill_brewer(type = "qual") +

labs(
title = "Infant gesture counts (tally) at 10 and 12 mo",
x = "Months old", y = "Gesture count"

)

Infant gesture counts (tally) at 10 and 12 mo

point

background

. Bengali
. Chinese

e T English

asauly)d

Gesture count

10 12 10 12 10 12
Months old

A bar chart is appropriate with count data, like in this case, but it does not allow for much
exploration. Each infant was recorded at 10 and 12 months of age, but in the plot you don’t
see whether individual infants changed their number of gestures. We can only notice that
overall the number of gestures increases from 10 to 12 months old.

150

We can use a “connected point” plot: each infant is represented by a dot at 10 and 12 months
and the dots of the same infant are connected by a line. This allows us to see whether an
individual infant uses more gestures at 12 months.

gestures %>%
filter(months %in% c(10, 12)) %>%
drop_na(count) %>%
ggplot(aes(as.factor (months), count, colour = background)) +
geom_line(aes(group = id), alpha = 0.5) +
geom_point(alpha = 0.7) +
facet_grid(background ~ gesture) +

scale_color_brewer(type = "qual") +

labs(
title = "Infant gesture counts at 10 and 12 mo",
x = "Months old", y = "Gesture count"

)

Infant gesture counts at 10 and 12 mo

40
30
20
10

40 background

30 Bengali
20 .

10 Chinese
0 English
40

30

20

10

Gesture count

10 12 10 12 10 12
Months old

You will notice that some infants don’t really use more gestures and others even use slightly
less gestures. You would not be able to see any of this if you used a bar chart, like we used
above

151

14.6 Practical tips

Here is a list of practical visualisation tips for you to think about.

Tip
1. Show raw data (e.g. individual observations, participants, items...).
2. Separate data in different panels as needed.
3. Use simple but informative labels for axes, panels, etc...
4. Use colour as a visual aid, not just for aesthetics.

5. Reuse labels, colours, shapes throughout different plots to indicate the same thing.

152

15 Plotting

In the previous chapter, Chapter 14, you have learned about basic visualisation principles.

Good data visualisation
1. It contains reliable information.
2. The design has been chosen so that relevant patterns become noticeable.

3. It is presented in an attractive manner, but appearance should not get in the way
of honesty, clarity and depth.

4. When appropriate, it is organized in a way that enables some exploration.

With these principles in mind, this chapter will teach you the basics of data visualisation (aka
plotting) in R. In R, you can create plots using different systems: base R, ggplot2, plotly,
lattice and others. This book focusses on the ggplot2 system, which is part of the tidyverse,
but before we dive in, it is useful to have a look at the base R plotting system.

15.0.1 Base R plotting function

Let’s create two numeric vectors, q and w and plot them. The function plot() takes two
arguments: the first argument x takes a vector with the horizontal coordinates (z-axis), here
g, and the argument y takes a vector of the same length as the vector of the first argument,
with the vertical coordinates (y-axis).

N:M is a shortcut for all integer numbers between N and M

q <- 1:10
w is the cube of q
w <- q°3

Plot a scatter plot with x as the x-axis and y as the y-axis
plot(x = q, y = w)

153

https://ggplot2.tidyverse.org/index.html
https://plotly-r.com
https://lattice.r-forge.r-project.org

- o)
o
o_
o o)
2 S5 o
o_
< o)
_| o
o o
o o0 o) O
[[[[[
2 4 6 8 10

The function takes care of adding tick-marks with numbers on the x and y axis, name the
axes with the names of the vectors and add the points based on the coordinates in the vectors.
It could not be easier! Now let’s add a few more things to this basic plot. Let’s specify
we want a line plot (type = "1") instead of points, that the line should be coloured purple
(col = "purple"), with a width of 3 (lwd = 3) and dashed (1ty = "dashed"). The function
connects the points from the coordinates given in the vectors with a line.

plot(q, w, type = "1", col = "purple", lwd = 3, lty = "dashed")

7 7/
o /7
8 /7

] /

/
< P
P 4
] -
—’
o4 =====--
[[[[[
2 4 6 8 10
q

With plots as simple as this one, the base R plotting system is sufficient, but to create more
complex plots (which is virtually always the case), base R gets incredibly complicated. Instead,
we can use the tidyverse package ggplot2. ggplot2 works well with the other tidyverse packages
and it follows the same principles, so it is convenient to use it for data visualisation instead of
base R. The following sections will go through the basics of plotting with ggplot2.

154

https://ggplot2.tidyverse.org

15.1 Your first ggplot2 plot

The tidyverse package ggplot2 provides users with a consistent set of functions to create
captivating graphics, and the package works well in combination with the other tidyverse
packages. We will plot data from winter2012/polite.csv (Winter and Grawunder 2012) to
learn the basics. We can read the data with read_csv() from readr and plot it with ggplot ()
from ggplot2. Since both readr and the ggplot2 package are part of the tidyverse, it is sufficient
to attach the tidyverse with library(tidyverse).

library(tidyverse)

polite <- read_csv("data/winter2012/polite.csv")
polite

A tibble: 224 x 27
subject gender birthplace musicstudent months_ger scenario task attitude

<chr> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1F1 F seoul_area yes 18 6 not inf
2 F1 F seoul_area yes 18 6 not pol
3 F1 F seoul_area yes 18 7 not inf
4 F1 F seoul_area yes 18 7 not pol
5 F1 F seoul _area yes 18 1 dct pol
6 F1 F seoul_area yes 18 1 dct inf
7 F1 F seoul_area yes 18 2 dct pol
8 F1 F seoul_area yes 18 2 dct inf
9 F1 F seoul_area yes 18 3 dct pol
10 F1 F seoul_area yes 18 3 dct inf

i 214 more rows

i 19 more variables: total_duration <dbl>, articulation_rate <dbl>,

fOmn <dbl>, fOsd <dbl>, fOrange <dbl>, inmn <dbl>, insd <dbl>,
inrange <dbl>, shimmer <dbl>, jitter <dbl>, HNRmn <dbl>, H1H2 <dbl>,
breath_count <dbl>, filler_count <dbl>, hiss_count <dbl>,
nasal_count <dbl>, sil_count <dbl>, ya_count <dbl>, yey_count <dbl>

H H

The polite data contains several acoustic measurements from utterances spoken by Korean
students in Germany. Each row is a single utterance and each participant has spoken many
utterances. These are the columns we will focus on.

o fOmn: the mean f0 (fundamental frequency). This is the mean fO of each utterance
(i.e. the f0 is calculated along the entire utterance and the mean is taken).

155

https://ggplot2.tidyverse.org

o H1H2: the difference between H2 and H1 (second and first harmonic; the paper reports
that this “was based on the central vowel portion of each vowel” although it is not clear if
the H1-H2 value of each vowel in the utterance was averaged to produce a mean H1-H2
difference per utterance). A higher H1-H2 difference indicates that the voice is more
breathy (as opposed to modal).

o gender: the gender of the speaker (F = female, M = male).

Figure 15.1 shows the plot we will end up with and you will learn how to create it bit by bit
below. This plot is a scatter plot, with mean f0 on the z-axis and the H1-H2 difference on the
y-axis. Each point represent a an observation in the data, i.e. a row. The points are coloured
based on the gender of the participant. You might notice that when mean fO is high, the
H1-H2 difference is lower. In other words, higher mean f0 corresponds to breathier voice.

10- o
o® ‘?‘o‘
00
o o ’ % ¢
@ RS
S ° ®% oF o
— ’o“‘ °®
8 > o. ~ .0 Gend
®] enaer
A
£ . F
o° e M
N
T 0
—
T
_5-
100 200 300 400

Mean fO (Hz)

Figure 15.1: Mean f0 and H1-H2 difference in Korean speakers, by gender (Winter and Grawun-
der 2012).

Each ggplot2 plot has a minimum of two constituents (which correspond to two arguments of
the ggplot () function): the data and aesthetics mapping.

ggplot2 basic constituents

o The data: you have to specify the data frame with the data (i.e. columns) you want
to plot.

156

e The mapping: the mapping tells ggplot how to map data columns to parts of the
plot like the axes or groupings within the data. For example, which variable is
shown on the x axis, and which one is on the y axis? If data comes from two
different groups, should each group get its own colour? These different parts of the
plot are called aesthetics, or aes for short.

You can specify the data and mapping with the data and mapping arguments of the ggplot ()
function. Note that the mapping argument is always specified with aes(): mapping = aes(..).
In the following bare plot, we are just mapping £Omn to the z-axis and H1H2 to the y-axis, from
the polite data frame. From this point on I will assume you’ll be creating a new code chunk,
copy-paste the code and run it, without explicit instructions.

ggplot(
data = polite,
mapping = aes(x = fOmn, y = H1H2)

)
10-
5 -
AN
T
—
T
0 -
_5 -
100 200 300 400
fOmn

Not much to see here: just two axes! So where’s the data? Don’t worry, we didn’t do anything

wrong. Showing the data itself requires a further step, adding geometries, which we’ll turn to
next.

157

Quiz 2

Is the following code correct?” Why? TRUE / FALSE

ggplot(
data = polite,
mapping = c(x = total_duration, y = articulation_rate)

)

15.1.1 Let’s add geometries

Our code so far makes nice axes, but we are missing the most important part: showing the
data! Data is represented with geometries, or geoms for short. geoms are added to the base
ggplot with functions whose names all start with geom_.

Geometries

Geometries are plot elements that show the data through geometric shapes.
Different geometries are added to a ggplot using one of the geom_* () functions.

For this plot, you want to use geom_point (). This geom simply adds point to the plot based
on the data in the polite data frame. To add geoms to a plot, you write a plus sign + at the
end of the ggplot() command and include the geom on the next line.! The geom_point ()
geometry creates a scatter plot, which is a plot with two continuous axes where data is
represented with points. Figure 15.2 is a scatter plot of mean f0 (mnf0) and H1-H2 difference
(H1H2).

Scatter plot

A scatter plot is a plot with two numeric axes and points indicating the data. It is used
when you want to show the relationship between two numeric variables.
To create a scatter plot, use the geom_point () geometry.

ggplot(

data = polite,

mapping = aes(x = fOmn, y = H1H2)
) &

geom_point ()

!'Note that going on the next line is just for reasons of code clarity and you could write the entire code for a
plot on a single line.

158

10- L

) o.
S Yop o C 3
3 0:‘.‘. ..' °Q.. ...Q..o. : ..o °
° °
5- ..0 e. o ® .0 '..&c:‘..o. .
° °
N .*. i) * .or ...0 :.. o
% .o 4 e . o © : °
° °
H o, :o ®
0- ° ° [_J =
°o® ° C
°)
.) .o
o o o
® °
°
-5- [] ()
1(I)0 2(I)O S(I)O 4CI)O
fomn

Figure 15.2: Scatter plot of mean f0 and H1-H2 difference.

Look at Figure 15.2: is there a relationship between mean f0 and H1-H2? A pattern can be
observed: when mean f0 is low, H1-H2 is high (meaning more breathiness) and when f0 is high,
H1-H2 is low (meaning less breathiness). Statistically, this is called a negative relationship.
The opposite is a positive relationship, when an increase in x corresponds to an increase in y.
Spoiler: the negative relationship in the plot is a mirage: if you look more closely, you might
spot two subgroups in the data: one up to about 175 hz and one from 175 hz up. We will see
below that these two groups correspond to the speakers’ genders.

For the time being, let’s pretend we don’t know that and we want to write a description of
the plot and the pattern. You could describe the plot this way:

Figure 15.2 shows a scatter plot of mean fO on the z-axis and H1-H2 difference on
the y-axis. The plot suggest an overall negative relationship between mean f0 and
H1-H2 difference. In other words, increasing mean fO corresponds to decreasing
breathiness.

R: The Layered Grammar of Graphics

Using the + is a quirk of ggplot (). The idea behind it is that you start from a bare plot
and you add (+) layers of data on top of it. This is because of the philosophy behind
the package, called the Layered Grammar of Graphics. In fact, Grammar of Graphics is
where you get the GG in ggplot!

159

http://vita.had.co.nz/papers/layered-grammar.html

15.1.2 Function arguments

Note that the data and mapping arguments don’t have to be named explicitly (with data =
and mapping =) in the ggplot () function, since they are obligatory and they are specified in
that order. So you can write:

ggplot(

polite,

aes(x = fOmn, y = H1H2)
) +

geom_point ()

In fact, you can also leave out x = and y =.

ggplot(

polite,

aes (fOmn, H1H2)
) +

geom_point ()

But we can go further. You can use the pipe |>, which you have encountered in Chapter 11.

polite |[>
ggplot (aes(fOmn, H1H2)) +
geom_point ()

You can of course stack multiple functions in the pipeline, like for example filtering the data
before plotting it, like so:

polite |[>
include only rows where fOmn < 300
filter (fOmn < 300) |[>
ggplot (aes(fOmn, H1H2)) +
geom_point ()

160

10- -

o® 00.000
oo ¢ ®e
.'o~ o V% o®® ®, > °
oo © [® Y e o
. Sas e lee em e e,
° o080 ® . % o oo ‘ro e o
T, Tt Sers
°
N ce® e o o« ¢ *,° .o.]
I [] % b ® ®e
r ° °® o © o ©
T ° e o
° ..0.. ® . .°
0-) o ©® [}
L4 °
.o o)
[] e ©
) i L
° ~ °
L)
-5- [] ()
100 150 200 250 300
fomn

Figure 15.3: Scatter plot of mean f0 and H1-H2 difference (filtered).

Exercise 1

Run 7ggplot in the Console and check the documentation of the function. Pay special
attention to the arguments of the function and the order they appear in.

Quiz 3

Which of the following will produce the same plot as Figure 15.27 Reason
through it first without running the code, then run all of these to check whether they
look the way you expected.

e (A lot(polite, aes(H1H2, fOmn)) + geom point()
ggp P g P

e (B lot(polite, aes(H1H2, x = fOmn)) + geom_point ()
ggp p y g P

« (C plot(polite, aes(fOmn, x = H1H2)) + geom_point ()
gg y g

161

Hint

When specifying arguments, the order matters when not using the argument names.
So aes(a, b) is different from aes(b, a).
But aes(y = b, x = a) is the same as aes(a, b).

15.2 Working with aesthetics

So far, the only aesthetics you have been using were the x and y aesthetics, which correspond
to the x and y axes. ggplot2 has many other aesthetics that can be employed to represent
other variables in the plot: in this section you will learn about colour (which is used to colour
geometries, like points) and alpha (which is used to set the transparency of geometries).

15.2.1 colour aesthetic

As mentioned above, there seems to be two subgroups within the data: one below about 175
Hz and one above it. These subgroups are in fact related to the gender of the participants.
We can colour the points by gender, using the colour aesthetic.? Figure 15.4 shows a scatter
plot of mean f0 and the H1-H2 difference, with points coloured depending on the gender of
the speaker. Now the two subgroups are quite visible, although we can also appreciate some
overlap between the two gender subgroups (some blue points overlap with the red points and
there is one red point that has a very low mean f0).

polite |[>
ggplot (aes(fOmn, H1H2, colour = gender)) +
geom_point ()

2To make ggplot inclusive, it’s possible to write the colour aesthetic either as the British-style colour or the
American-style color! Both will get the job done.

162

10- L

. °3
° %
...:0.'.’ o °
®® o [] ..
@ @
g. o8 o.o. ° o
5- ° &
*° o P a gender
T A
— ° F
I
e M
O-
5
1(I)O 2(I)O 3(I)O 4(I)O
fOmn

Figure 15.4: Scatter plot of mean fO0 and H1-H2 difference, by gender.

Notice how colour = gender must be inside the aes () function, because we are trying to map
colour to the values of the column gender (when you map values to aesthetics, the aesthetics
have to be inside aes()). Colours are automatically assigned to each level in gender (here, F
for female which gets red and M for male which gets blue).

The default colour palette is used, but you can customise it. One way to quickly change
the palette it to use one of the scale_colour_x() functions. A good option for our plot is
scale_colour_brewer (). This function creates palettes based on ColorBrewer 2.0. There are
three types of palettes (see the linked website for examples):

e Sequential (seq): a gradient sequence of hues from lighter to darker.

o Diverging (div): useful when you need a neutral middle colour and sequential colours
on either side of the neutral colour.

e Qualitative (qual): useful for categorical variables.

Let’s use the default qualitative palette, since gender is a categorical variable in the data. Fig-
ure 15.5 is the same as Figure 15.4, but we are now using a qualitative ColorBrewer palette.

polite |[>
ggplot (aes(fOmn, H1H2, colour = gender)) +
geom_point() +
scale_color_brewer(type = "qual")

163

https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3

10-

5 -
gender
N
L F
I
M
O -
_5 -
160 260 360 460
fOmn
Figure 15.5: Scatter plot of mean fO0 and H1-H2 difference, by gender.
Exercise 2

Change the palette argument of the scale_colour_brewer() function to different
palettes. Check the function documentation for a list of available palettes.

Another set of palettes is provided by scale_colour_viridis_d() (the d stands for “discrete”
palette, to be used for categorical variables like gender). Figure 15.6 uses the “B” palette from

the viridis palettes.

polite |[>

ggplot (aes(fOmn, H1H2, colour = gender)) +
geom_point() +
scale_color_viridis_d(option = "B")

164

10-

:
. :’.:0.
200 14 L)
5- ° : ‘...‘o..o.
Yy SN ° gender
C:I\:I o K o.: L
= o N o © ° * F
T ° o ®
[) o .‘. (J o L M
o &
0- ° .. %
K °
o oo
o. o
e 4 °
L °
°
-5- [] ()
160 260 360 460
fOmn

Figure 15.6: Scatter plot of mean fO0 and H1-H2 difference, by gender.

R Note: The default colour palette

If you want to know more about the default colour palette, check this blog post out.

15.2.2 alpha aesthetic

Another useful ggplot2 aesthetic is alpha. This aesthetic sets the transparency of the geometry:
0 means completely transparent and 1 means completely opaque. When you are setting the
value of an aesthetic yourself that should apply to all instances of some geometry, rather than
mapping an aesthetic to values in a specific column (like we did above with colour), you
should add the aesthetic outside of aes() and usually in the geom function you want to set
the aesthetic for. Set alpha for the point geometry to 0.5.

Hint

geom_point(alpha = ...)

Setting a lower alpha is useful when there are a lot of points or other geometries that overlap
with each other and it just looks like a blob of colour (so that, for example, you can’t really
see the individual points). It is not the case here, and in fact reducing the alpha makes the
plot quite illegible!

165

https://www.statology.org/ggplot-default-colors/

15.3 Labels

The labels of the plot, like the axes labels and the legend, are automatically included by ggplot2
based on the names of the variables/columns. If you want to change the labels to something
you set yourself, you can use the labs() function, like in Figure 15.7 below.

polite |[>
ggplot (aes(fOmn, H1H2, colour = gender)) +
geom_point () +
labs(
X = "Mean fO (Hz)",
y = "H1-H2 difference (dB)",

colour = "Gender"
)
10- —
o °°°
LYY 9%
0.'.'. % > []
) e :: ‘. % .‘.5..
o H (3N) ® e e o
~ o []
5- — °7 o o g, €Ceo, .o
(] ® .~ ° ove LY Y
= %o o o 8 0, . Gender
g ‘o... o’e %oy .
;g ° [4 Q" o © : ® ¢ F
° O . e o ¢ o M
o [] ' ...’
I 0- ° @ []
| o L)
— o0 °
I ® o o
o. L]
o o ©
L)
°
-5- [])
100 200 300 400

Mean f0 (Hz)

Figure 15.7: Scatter plot of mean f0 and H1-H2 difference, by gender.

Let’s rewrite out description of the plot from above to reflect the updates.

Figure 15.7 shows a scatter plot of mean 0 on the z-axis and H1-H2 difference on
the y-axis, with points coloured by gender. The plot suggest an overall negative
relationship between mean fO0 and H1-H2 difference. However, the negative rela-
tionship appears to be an artefact of the presence of the two gender subgroups:

166

male participants have lower mean f0 and higher H1-H2 difference (less breathi-
ness), while female participants have higher f0 and lower H1-H2 difference (more
breathiness).

Exercise 3

Add a title and a subtitle (use these two arguments within the labs() function).

Hint

For example, labs(title = "...", ...).

15.4 Summary

« ggplot2 is a plotting package from the tidyverse.
« To create a basic plot, you use the ggplot () function and specify data and mapping.

— The aes() function allows you to specify aesthetics (like axes, colours, ...) in
the mapping argument.

— Geometries map data values onto shapes in the plot. All geometry functions
are of the type geom_x ().

e Scatter plots are created with geom_point () and can be used with two numeric
variables set as the x and y aesthetics.

e The colour and alpha aesthetics set the geometry’s colour and transparency.

e If you need to set an aesthetic to be applied to the entire geometry, you can specify
the aesthetic in the geometry, without the aes() function.

167

16 More plotting

16.1 Bar charts

In Figure 12.1 from Chapter 12, you saw how to visualise counts with a bar chart. In this chap-
ter you will learn how to create bar charts with ggplot2. We will first create a plot with counts of
the number of languages in global_south (filtered data from coretta2022/glot_status.rds)
by their endangerment status and then a plot where we also split the counts by macro-area.
To create a bar chart, you use the geom_bar() geometry.

Bar charts

Bar charts are useful when you are counting things. For example:

e Number of verbs vs nouns vs adjectives in a corpus.
e Number of languages by geographic area.

e Number of correct vs incorrect responses.

The bar chart geometry is geom_bar ().

Read the coretta2022/glot_status.rds data and filter it so that you include only languages
from Africa, Australia, Papunesia and South America, with any status except not endangered
and extinct.

In a simple bar chart, you only need to specify one axis, the x-axis, in the aesthet-
ics aes(). This is because the counts that are placed on the y-axis are calculated by the
geom_bar () function under the hood. This quirk is something that confuses many new learn-
ers, so make sure you internalise this. Go ahead and complete the following code to create a
bar chart.

global_south [>
ggplot(aes(x = status)) +

168

The counting for the y-axis is done automatically. R looks in the status column and counts
how many times each value in the column occurs in the data frame. The counts are then
plotted as bars. If you did things correctly, you should get the following plot. The z-axis is
now status and the y-axis corresponds to the number of languages by status (count).

1200 -

800 -
IS
S
]
O

400 -

0- - -
threatened shifting moribund nearly_extinct
status

Figure 16.1: Number of languages by endangerment status.
You could write a description of the plot that goes like this:
The number of languages in the Global South by endangered status is shown as a
bar chart in Figure 16.1. Among the languages that are endangered, the majority

are threatened or shifting.

What if we want to show the number of languages by endangerment status within each of the
macro-areas that make up the Global South? Easy! You can make a stacked bar chart.

16.2 Stacked bar charts

A special type of bar charts are the so-called stacked bar charts.

169

Stacked bar chart

A stacked bar chart is a bar chart in which each bar contains a “stack” of shorter bars,
each indicating the counts of some sub-groups.

This type of plot is useful to show how counts of something vary depending on some
other grouping (in other words, when you want to count the occurrences of a categorical
variable based on another categorical variable). For example:

e Number of languages by endangerment status, grouped by geographic area.
e Number of infants by head-turning preference, grouped by first language.

e Number of past vs non-past verbs, grouped by verb class.

To create a stacked bar chart, you just need to add a new aesthetic mapping to aes(): £ill.
The £i11 aesthetic lets you fill bars or areas with different colours depending on the values of
a specified column. Let’s make a plot on language endangerment by macro-area. Complete
the following code by specifying that £ill should be based on status.

global_south [>
ggplot (aes(x = Macroarea, ...)) +
geom_bar ()

You should get the following.
A write-up example:

Figure 16.2 shows the number of languages by geographic macro-area, subdivided
by endangerment status. Africa, Eurasia and Papunesia have substantially more
languages than the other areas.

Quiz 1
What is wrong in the following code?
gestures |>

ggplot(aes(x = status), fill = Macroarea) +
geom_bar ()

16.3 Filled stacked bar charts

In the plot above it is difficult to assess whether different macro-areas have different proportions
of endangerment. This is because the overall number of languages per area differs between

170

1000 -

status

. threatened
I shifting

. moribund
. nearly_extinct

count

500 -

. e

Africa Australia Papunesia South America
Macroarea

Figure 16.2: Number of languages by macro-area and endangerment status.

areas. A solution to this is to plot proportions instead of raw counts. You could calculate the
proportions yourself, but there is a quicker way: using the position argument in geom_bar ().

You can plot proportions instead of counts by setting position = "fill" inside geom_bar (),
like so:

global_south |[>

ggplot (aes(x = Macroarea, fill = status)) +
geom_bar (position = "£ill")

171

status

. threatened
I shifting

. moribund
. nearly_extinct

count

1.00-
0.75-
0.50-
0.25-
0.00-

Africa Australia Papunesia South America
Macroarea

Figure 16.3: Proportion of languages by macro-area and endangerment status.

The plot now shows proportions of languages by endangerment status for each area separately.
Note that the y-axis label is still “count” but should be “proportion”. Use labs() to change
the axes labels and the legend name.

global_south |[>

ggplot (aes(x = Macroarea, fill = status)) +
geom_bar (position = "£ill") +
labs(

Hint

If to change the name of the colour legend, you use the colour argument in labs(),
guess which argument you should use for £1117

You should get this.

With this plot it is easier to see that different areas have different proportions of endangerment.
In writing:

Figure 16.4 shows proportions of languages by endangerment status for each macro-
area. Australia, South and North America have a substantially higher proportion

172

Endangerment

. threatened
I shifting

. moribund
. nearly_extinct

Proportion

1.00-
0.75-
0.50-
0.25-
0.00-

Africa Australia Papunesia South America
Macro—area

Figure 16.4: Proportion of languages by macro-area and endangerment status.

of extinct languages than the other areas. These areas also have a higher pro-
portion of near extinct languages. On the other hand, Africa has the greatest
proportion of non-endangered languages followed by Papunesia and Eurasia, while
North and South America are among the areas with the lower proportion, together
with Australia which has the lowest.

16.4 Faceting and panels

Sometimes we might want to separate the data into separate panels within the same plot.
We can achieve that easily using faceting. Let’s revisit the plots from Chapter 15. We will
use the winter2012/polite.csv data again. This is the plot you previously made. Try and
reproduce it by writing the code yourself (you also have to read in the datal).

That looks great, but we want to know if being a music student has an effect on the relationship
of fOmn and H1H2. In the plot above, the aesthetics mappings are the following: fOmn on the
r-axis, H1H2 on the y-axis, gender as colour. How can we separate data further depending
on whether the participant is a music student or not (musicstudent)? We can create panels
using facet_grid(). This function takes lists of variables to specify panels in rows and/or
columns.

Faceting a plot allows to split the plot into multiple panels, arranged in rows and columns,

173

10- L

o °C°
°)
.i;'“'o % ® .
—~ []
% R ".:. .0' o:. .Ogﬁo
~ .. PYC) Qe O (4 o9
5- o © ° ‘h» °
) ® fo (X))
o ° o ¢ x of oo °
c '.;... o ™ o...:‘ . Gender
— [J
£ % S Nl . ® F
© O S, ’o ° ¢ e M
I ¢ % o‘d'
T °
| 0- ° .’ o
— o0 °
I ‘0 e ©0°
o [
[P
° °
°
-5- [)
100 200 300 400

Mean f0 (Hz)

Figure 16.5: Scatter plot of mean f0 and H1-H2 difference.

based on one or more variables. To facet a plot, use the facet_grid() function. The syntax
is a bit strange. You can specify rows of panels with the rows argument and columns of panels
with cols argument, but you have to include column names inside vars(), like this:

polite |[>
ggplot (aes(fOmn, H1H2, colour = gender)) +
geom_point() +
facet_grid(cols = vars(musicstudent)) +
labs(
x = "Mean fO (Hz)",
y = "H1-H2 difference (dB)",
colour = "Gender"

174

no yes

10- e
< P
® ()
—~ “" ..‘. ‘ ®
!g ’ N o. So
~ .. []
8 5- - ® o.. 7 Gend
s ° o0 ender
Ly :
& [}
N
I O-
o
I
_5-

100 200 300 400 100 200 300 400
Mean fO (Hz)

Figure 16.6: Scatter plot of mean f0 and H1-H2 difference in non-music students (left) vs music
students (right).

You could write a description of this plot like this:

Figure 16.6 shows mean fO and H1-H2 difference as a scatter plot. The two panels
indicate whether the participant was a student of music. Within each panel, the
participant’s gender is represented by colour (red for female and blue for male).
Male participants tend to have higher H1-H2 differences and lower mean fO than
females. From the plot it can also be seen that there is greater variability in H1-
H2 difference in female music students compared to female non-music participants.
Within each group of gender by music student there does not seem to be any specific
relation between mean f0 and H1-H2 difference.

The polite data also has a column attitude with values inf for informal and pol for polite.
Subjects were asked to speak either as if they were talking to a friend (inf attitude) or to
someone with a higher status (pol attitude). Recreate the last plot, this time faceting also by
attitude. Use the rows column to create two separate rows for each value of attitude.

polite |[>
ggplot(aes(fOmn, H1H2, colour = gender)) +
geom_point() +
facet_grid(cols = vars(musicstudent), rows = ...)

175

Exercise 1

Write a description for the last plot.

16.5 Summary

e Create bar charts with geom_bar () to show counts.

e Use stacked bar charts to show groupings within counts and filled stacked bar charts
to show proportions.

e You can create panels with facet_grid().

176

17 Research cycle

Area Research methods

In Chapter 1, you learned about the research process, which includes the research context,
data acquisition, data analysis and communication. A different perspective on the research
process that highlights the temporal succession of the process steps is the RESEARCH CYCLE,
represented in an idealised form in Figure 17.1.

The cycle starts with the development of research questions and hypotheses. This step
involves a thorough literature review and the identification of the topic, research problem, goal,
questions and, possibly, hypotheses (as described in Chapter 2). Once the research questions
and hypotheses have been determined, the researcher proceeds with the design of the study
which sets out to answer the research questions and assess the research hypotheses. The study
design process includes determining a large number of interconnected aspects, like materials,
procedures, data management and data analysis plans, target population, sampling method
and so on. At times the study design process reveals shortcomings or unforeseen aspects of
the research questions/hypotheses which can be updated accordingly.

Once the study design has been finalised, one proceeds with acquiring data based on the
protocols detailed in their plan. After the completion of data acquisition, researchers analyse
data and interpret the results in light of the research questions and hypotheses. Finally,
the outcomes of the study are published in some form and the next study cycle begins
once again.

This sounds all very reasonable, but in reality, the researchers’ practice is quite different. This
chapter introduces the concept of “researcher’s degrees of freedom” and describes the so-called
Questionable Research Practices (QRPs). We will review literature that shows the grim reality
of how common QRPs are. In Chapter 33, you will learn about principles and tools that are
designed to help minimise the presence and impact of QRPs in one’s own research.

17.1 Researcher’s degrees of freedom

This section is reproduced from Coretta et al. (2023) (CC-BY-NC) with minor edits.

177

Research
question/hypothesis

u = -@
o= h
U ———
Publication/ Study design
next study

®

4

Interpretation Data acquisition

e

Data analysis

B

Figure 17.1: The research cycle

178

Data analysis involves many decisions, such as how to operationalise and measure a given
phenomenon or behaviour, which data to submit to statistical modelling and which to exclude
in the final analysis, or which inferential approach to employ. This “freedom” can be prob-
lematic because humans show cognitive biases that can lead to erroneous inferences (Tversky
and Kahneman 1974). For example, humans are prone to see coherent patterns even in the
absence of them (Brugger 2001), convince themselves of the validity of prior expectations by
cherry-picking evidence (aka confirmation bias, “I knew it,” Nickerson 1998), and perceive
events as being plausible in hindsight (“I knew it all along,” Fischhoff 1975). In conjunction
with an academic incentive system that rewards certain discovery processes more than others
(Koole and Lakens 2012; Sterling 1959), we often find ourselves exploring many possible an-
alytic pathways but reporting only a selected few depending on the quality of the narrative
that we can achieve with them.

This issue is particularly amplified in fields in which the raw data lend themselves to many
possible ways of being measured (Roettger 2019). Combined with a wide variety of conceptual
and methodological traditions as well as varying levels of quantitative training across sub-fields,
the inherent flexibility of data analysis might lead to a vast plurality of analytic approaches
that can itself lead to different scientific conclusions (Roettger, Winter, and Baayen 2019).
Analytic flexibility has been widely discussed from a conceptual point of view (Nosek and
Lakens 2014; Simmons, Nelson, and Simonsohn 2011; Wagenmakers et al. 2012) and in regard
to its application in individual scientific fields (e.g., Charles et al. 2019; Roettger, Winter, and
Baayen 2019; Wicherts et al. 2016). This notwithstanding, there are still many unknowns
regarding the extent of analytic plurality in practice.

Consequently, a substantial body of published articles likely present overconfident interpreta-
tions of data and statistical results based on idiosyncratic analytic strategies (e.g., Gelman
and Loken (2014); Simmons, Nelson, and Simonsohn (2011)). These interpretations, and the
conclusions that derive from them, are thus associated with an unknown degree of uncertainty
(dependent on the strength of evidence provided) and with an unknown degree of generalizabil-
ity (dependent on the chosen analysis). Moreover, the same data could lead to very different
conclusions depending on the analytic path taken by the researcher. However, instead of being
critically evaluated, scientific results often remain unchallenged in the publication record.

17.2 Questionable Research Practices

This section contains text from Coretta (2020) (CC-BY-NC) .

QUESTIONABLE RESEARCH PRACTICES are practices, whether intentional or not, that under-
mine the robustness of research (Simmons, Nelson, and Simonsohn 2011; Morin 2015; Flake
and Fried 2020). Questionable research practices are practices that negatively affect the re-
search enterprise, but that are employed (most of the time unintentionally) by a surprisingly
high number of researchers (John, Loewenstein, and Prelec 2012). For each step in the research

179

Lack of replication
11in 10® papers

~ " - Makel et al (2812)
:(?):
Publication bias L tatistical
92% positive results ow Statistical power
Fanelli (2618) tBesz_larChth . ~508% prob to detect
question/nypothesis medium effects
Cohen (1962); Sedlmeier and

Lack of data sharing _‘ Gigerenzer (1989);
~70% fail to reproduce) Bezeau and Graves (2061)
Wicherts et al (2006)
.. Changing RQ/RH .
Publication/ ~58-98% prevalence Study design
next study John et al (2812);
K Kerr (1998)

Selective reporting E%“% .
o 50-180% prevalence Sample bias

- John et al (2812)
Interpretation Data acquisition
Human bias \ /

Data analysis

oo

B

Figure 17.2: The research cycle and questionable research practices

180

cycle, questionable practices are available to researchers. These are part of the researcher’s
degrees of freedom, introduced in the previous section. In this section, we will briefly review
some of the most common questionable research practices identified in the literature.

Makel, Plucker, and Hegarty (2012) looked at the publication history of 100 psychological
journals since 1900. They found that only 1.07% of the papers (that is, 1 in 100 papers) were
replications of previous studies. This means that the vast majority of studies are run only once
and the field moves on. As Tukey (1969, 84) said, “Confirmation comes from repetition. Any
attempt to avoid this statement leads to failure and more probably to destruction”. This lack
of replication attempts is problematic, given than we can’t be certain the results obtain from
the one study would replicate if the study is run again. While the study in Makel, Plucker,
and Hegarty (2012) focused on psychology, Kobrock and Roettger (2023) find that linguistics
shows a more dire situation: only 0.08% of experimental articles contains an independent
direct replication (1 in 1250).

Another issue that affects modern research regards study design, including aspects related to
sample size. Several studies have found that most research employs study designs that grant
a 50% probability of being able to find effects of medium size (Cohen 1962; Sedlmeier and
Gigerenzer 1992; Bezeau and Graves 2001). Gaeta and Brydges (2020) find a similar scenario
in speech, language and hearing research: the majority of studies they screened did not have
an adequate sample size to be able to detect medium-sized effects.

In a study about the prevalence of questionable research practices, John, Loewenstein, and
Prelec (2012) found that about 50% of the researchers interviewed admitted to selective re-
porting, i.e. reporting only some of the statistical analyses or studies conducted. Combined
with a theoretical admission rate, the authors argue for a 100% rate of selective reporting
(in other words, we can expect all published studies to be affected by selective reporting).
They also found that about 35% of the researchers admitted to having changed the research
question/hypothesis after seeing the results (or “claiming to have predicted an unexpected
finding”), also known as HARKing (Hypothesising After the Results are Known, Kerr 1998).
Combined with the theoretical admission rate, they estimate an actual rate of 90%.

We will talk more about sharing research data when you will learn about Open Research
practices in Chapter 33, but Wicherts et al. (2006) contacted the authors of 141 articles in
psychology asking to share the research data with them and a worrying 73% of the authors
never shared their data. Bochynska et al. (2023) surveyed 600 linguistic articles and less than
10% of them shared their data as part of the publication.

Publication bias is used to refer to the bias towards publishing “positive” results (i.e. results
that indicate the presence of an effect). Fanelli (2010); Fanelli (2012) found that about 80% of
published results are positive results across disciplines, while the prevalence of positive results
was higher in fields like psychology and economics (about 90%). Of course, the very high
prevalence of positive results indicates that a lot of “negative” results (i.e. results that don’t
suggest the presence of an effect) are not published, because in a neutral scenario (where
researchers propose and test hypotheses, in an iterative process), there should be many more

181

negative results. Ioannidis (2005), for example, shows through computational modelling that
a prevalence rate of positive results of 50% or above would be very difficult to obtain and
concludes that “most published research findings are false”. Relatedly, Nissen et al. (2016)
also use computational modelling to show how false claims can frequently become canonized
as fact, in the absence of sufficient negative results. Further to these points, Scheel (2022)
stresses that “most psychological research findings are not even wrong”, in that most claims
made in the literature are “so critically underspecified that attempts to empirically evaluate
them are doomed to failure” (Scheel 2022, 1).

Quiz 1
a. True or false?

1. In the research cycle, hypotheses are always fixed after the study design is finalised
and cannot be changed. TRUE / FALSE

2. Researcher’s degrees of freedom refers to the many decisions involved in data anal-
ysis, which can influence outcomes and interpretations. TRUE / FALSE

3. Publication bias describes the tendency for journals to publish studies with negative
results more often than those with positive results. TRUE / FALSE

b. Which of the following is considered a Questionable Research Practice.
e (A) Running a replication study to confirm findings.
o (B) Selectively reporting only some of the analyses conducted.
e (C) Increasing sample size to ensure adequate statistical power.

o (D) Publishing negative results alongside positive ones.

182

Part IV

Week 4

183

18 Probability distributions

Area | Statictics R

18.1 Probabilities

Probability as a discipline is the study of chance and uncertainty. It provides a systematic
way to describe and reason about events whose outcomes cannot be predicted with certainty.
In everyday life, probabilities are used to talk about situations ranging from rolling dice and
drawing cards to forecasting the weather or assessing risks. A probability is expressed as a
number between 0 and 1, where 0 means the event is impossible, 1 means it is certain, and
values in between reflect varying degrees of probability. So for example if I say the probability
of rain tomorrow is 0, it means that raining tomorrow is impossible. Conversely, if I say that
the probability of rain tomorrow is 1, I mean that raining tomorrow is certain: it will happen.
Probabilities are also expressed as percentages: so 0 is 0% and 1 is 100% percent. An 80%
probability of rain tomorrow is a high probability, but not quite certainty. Thinking in terms
of probability allows us to quantify uncertainty and to make informed statements about how
likely different outcomes are, even when we cannot predict exactly what will happen.

The rules of probability ensure that these numbers behave consistently. The non-negativity
rule states that no probability can be less than 0. The normalization rule requires that the
probability of all possible outcomes of a situation must add up to exactly 1, which guarantees
that something in the set of possible outcomes will happen. The addition rule tells us that
if two events cannot both occur at the same time—such as rolling a 3 or rolling a 5 on a single
die throw—the probability of either happening is the sum of their individual probabilities.
The multiplication rule applies when two events are independent, meaning the outcome of
one does not affect the other—for instance, tossing a coin and rolling a die. In that case, for
example, the probability of getting heads and a 3 together is the product of their individual
probabilities (i.e. the probability of getting heads, 1/2 or 0.5, and the probability of getting 3,
1/6 or 0.166): if we multiply 0.5 by 0.166, we get approximately 0.083. So there is an 8.3%
probability of getting heads and a 3 when flipping a coin and rolling a die. These rules provide
the logical foundation for reasoning about probabilities and serve as the basis for describing
probability distributions, which organize and model probabilities across a whole set of possible
outcomes. However, you will see that in practice you will rarely have to use them, yourself.

184

Quiz 1
True or false?

a. A certain event is an event that has a probability equal to or greater than 1. TRUE
/ FALSE

b. An event that has probability of 0 is an impossible event. TRUE / FALSE

c. Probabilities are expressed with a number between 0 and 1 (inclusive). TRUE /
FALSE

d. When one event cannot occur if another does occur, these are called equally likely
events. TRUE / FALSE

18.2 Probability distributions

Distribution
of
probabilities!

Probability

distribution?

A probability distribution is a way of describing how probabilities are assigned to all possible
outcomes of a random process. Conceptually, you can think of a probability distribution as
a distribution of probabilities: i.e. a list of possible outcomes (values) and their probability.
Instead of focusing on the probability of a single event (like getting a 4 on a die), a distribution
gives the full picture: it tells us the probability of every possible value a random variable can
take. For example, when rolling a fair six-sided die, the probability distribution assigns a
probability of 1/6 to each face, reflecting that all outcomes (i.e. all numbers from 1 to 6) are
equally likely. In other cases, probabilities may not be spread evenly, as with a biased coin
or the distribution of heights in a population (there are more people of mean height that
very short and very tall people). By summarizing the probability of all outcomes at once,
probability distributions allow us to see patterns in a clear and structured way.

There are two broad types of probability distributions: discrete and continuous probability
distributions. Discrete probability distributions apply to discrete variables, such as the

185

result of a dice roll, the number of words known by an infant, or the accuracy of a response
(correct vs incorrect). Here, probabilities are assigned to distinct values, and the total across
all possible outcomes must equal 1. So, on a six-sided die, each outcome has a 1/6 (one in
six) probability and since there are six outcomes, 1/6 * 6 = 1. Continuous probability
distributions, on the other hand, are used when outcomes can take on any value within
a range, such as height, reaction times, or phone duration. In these cases, probabilities are
described by smooth curves rather than discrete points, and instead of assigning probability
to individual values, we consider intervals, like for example, the probability that a person’s
height lies between 160 cm and 170 cm (more on this in Section 19.2 below). Figure 18.1 shows
an example of a categorical probability distribution (the probability of respondents answering
“no” or “yes” in a survey) and a continuous probability distribution (the proportion of voicing
during closure of a stop).

p <- 0.8
bernoulli_df <- tibble(
x = C(“NO", "Yes“),

probability = c(1 - p, p)

)

ggplot(bernoulli_df, aes(x = factor(x), y = 0 , yend = probability)) +
geom_segment (colour = "steelblue", linewidth = 2) +
geom_point(aes(y = probability), colour = "steelblue", size = 5) +
labs(x = element_blank(), y = "Probability") +
ylim(0, 1)

alpha <- 1.5

beta <- 4

beta_df <- tibble(
x = seq(0, 1, length.out = 100),
density = dbeta(x, alpha, beta)

)

ggplot(beta_df, aes(x = x, y = density)) +
geom_line(color = "darkorange", linewidth = 1.2) +
labs(x = "Proportion of voicing", y = "Density")

Probability distributions

A probability distribution describes how probabilities are distributed across outcomes
of a random variable.

There are two main types: discrete probability distributions and continuous probability
distributions.

186

1.00

2.0

o
~
a

15

Probability
o
g
Density

0.5

I 0.0
0.00
0.00 0.25 0.50 0.75 1.00

No Yes Proportion of voicing

(a) Categorical probability distribution. (b) Continuous probability distribution.

o
N
a

Figure 18.1: Example of a categorical probability distributiona and a continous probability
distribution.

Several well-known distributions serve as fundamental building blocks in probability and statis-
tics. Among discrete distributions, the binomial distribution describes the number of successes
in a fixed number of independent trials (like accuracy data from a behavioural task), while the
Poisson distribution is used for counting events that occur randomly over time or space (such
as number of relatives sentences in a corpus). In the continuous case, the Gaussian distribu-
tion (which we will explore below) has many useful mathematical properties and it features
prominently in any statistical textbook. Other continuous distributions are, for example, the
beta distribution, illustrated in Figure 18.1b, used for continuous variables bounded between
0 and 1, and the uniform distribution, which distributes probabilities equally across the entire
range of real numbers (so it is a “flat” distribution, since it looks like a horizontal line).

Probability distributions are more than just mathematical descriptions—they provide tools for
making sense of variation and uncertainty in the world. They allow us to calculate probabilities
for complex events, to compare different random processes, and to build models that reflect
real-world randomness. Once the distribution of a random variable is known, we can derive
useful summaries such as averages, variability, and the probability of extreme outcomes. In
this way, probability distributions bridge the abstract rules of probability with the practical
task of describing how probability operates across a whole set of possibilities.

18.3 Probability mass and density functions

How is the probability of different outcomes of ranges of outcomes calculated? For discrete
distributions, the probability mass function (PMF) is used to compute probabilities. Let’s
take the Bernoulli probability distribution from figure Figure 18.1a: the PMF of a Bernoulli
distribution is p for the probability of the outcome being 1, and ¢ = 1 — p for the probability
of the outcome being 0. In the figure, 1 = “Yes” and 0 = “No”. There is a probability p = 0.8

187

9

of getting a “Yes”, hence there is a probability ¢ =1 —p =1 — 0.8 = 0.2 of getting a “No
Continuous probability distributions use probability density functions (PDFs, nothing to
do with the file format): these don’t tell you the probability of a specific value, but rather
the probability density or in other words how dense the probability is around a point. I will
spare you the mathematical details of PDFs, but they are the reason for using density plots.
You’ve encountered a density plot already, in Figure 18.1b above. The curve you see in that
figure is calculated with the PDF of the beta distribution. Because we used a PDF, this is a
theoretical probability distribution. In practice, you will almost never have to use PMFs and
PDFs yourself, but it helps to know about them.

PMF and PDF

The Probability Mass Function (PMF) and the Probability Density Function
(PDF) are mathematical functions used to compute theoretical probability distributions.

What if we want the density of a sample from a random variable, like logged RTs from the
MALD data set (Tucker et al. 2019)? Obtaining the density curve of a sample is done with
Kernel Density Estimation (KDE): this is a function that creates a smooth, continuous
estimate of a probability density from a finite set of data points (the sample). As with PMFs
and PDFs, you will very rarely have to use KDE directly, since R applies it for you. So let’s
see how to make a density plot in ggplot2.

Kernel Density Estimation (KDE)

Kernel Density Estimation is a function that creates a smooth estimate of a probabil-
ity density from a finite set of data points. It returns an empirical probability distribution.

18.4 Density plots

You can create a density plot (i.e. a plot that shows the density curve as obtained from KDE)
of sample values from a continuous variable with the density geometry: geom_density ().

First read the data
mald <- readRDS("data/tucker2019/mald 1 1.rds")

mald |[>
ggplot(aes(RT)) +
geom_density() +
labs(x = "Reaction Times (ms)")

188

0.0020

0.0015

0.0010

density

0.0005

0.0000

0 1000 2000 3000
Reaction Times (ms)

Figure 18.2: Density plot of reaction times.

Figure 18.2 shows the density of reaction times from the MALD data set, in milliseconds. The
higher the curve, the higher the density around the values below that part of the curve. In
this sample of RTs, the density is high around about 900 ms. It drops quite sharply below 900
ms to about 500, while on the other side of 900 it has a more gentle slope. When a density
plot looks like that, we say the distribution is right-skewed or that is has positive skew.
This is because the distribution is skewed towards larger values. We can visualise this better
by adding a “rug” to the plot with geom_rug(). This geometry adds a tick below the curve,
on the z-axis, for each value in the sample. Look at Figure 18.3. Note how dense the ticks are
where the density is high, and how sparse the ticks are where the density is lower. This makes
sense, that’s what the density represents. Setting alpha = 0.1 makes the ticks transparent
so that the denseness is even more obvious (darker areas mean greater density because the
ticks overlap, thus becoming darker). Now also notice how there are many more ticks to the
right of the highest part of the density than to the left. This is the right-skewness we were
talking about. This aspect will be relevant when you will learn about regression models in
later chapters, but in fact we will not directly address this again until Chapter 31.

mald |>
ggplot(aes(RT)) +
geom_density() +
geom_rug(alpha = 0.1) +
labs(x = "Reaction Times (ms)")

189

0.0020

0.0015

0.0010

density

0.0005

0.0000 |

0 1000 2000 3000
Reaction Times (ms)

Figure 18.3: Density plot of reaction times with rug.

Density plots can also be made for different groupings, like in the following plot where we
show the density of RTs depending on the lexical status of the word (real or non-real). You
can use the £ill aesthetics to fill the area under the density curve with colour by IsWord.
Figure 18.4 shows the densities of RTs depending on lexical status. It is subtle, but we can
see that the density peak for nonce words (IsWord = FALSE) is to the right of the peak for
real words. This means that we can expect on average higher RTs for nonce words than for
real words. Moreover, the curve for nonce words is overall lower than that for real words: this
means that RTs with real words are more tightly concentrated around the peak, while RTs
with nonce words are more spread.

mald |[>
ggplot (aes(RT, £fill = IsWord)) +
geom_density(alpha = 0.7) +
geom_rug(alpha = 0.1) +
scale_fill brewer(type = "qual") +
scale_color_brewer(type = "qual") +
labs(x = "Reaction Times (ms)")

190

0.0020

0.0015
> Isword
& TRUE
@ 0.0010
© FALSE

0.0005

0-0000 |

0 1000 2000 3000
Reaction Times (ms)
Figure 18.4: Density plot of reaction times by lexical status.
Exercise 1

Read winter2016/senses_valence.csv and produce the following plot:

A density plot of affective valence Val, with densities split and areas coloured by
Modality.

Remove the black density curve (only the filled area should be shown).
Add a rug, also coloured by Modality.
Change the labels if you like.

Any interesting patterns?

To remove an element of a geometry, like the line of density, you set colour to NA.

Be careful with how you specify colour, since the density and rug geometry need
different colour specifications.

191

Solution

I got you! No solution for this exercise, just do a little internet research if necessary.

192

19 Working with distributions

Area Statistice m;

19.1 The Gaussian distribution

In the previous section, we have seen that you can visualise probability distributions by plot-
ting the probability mass or density function for theoretical probabilities and by using kernel
density estimation for sample (aka empirical) distributions. Visualising probability distribu-
tions is more practical than listing all the possible values and their probability (especially
with continuous variables—since they are continuous there is an infinite number of values!).
Another convenient way to express probability distributions is to specify a set of parameters,
which can reconstruct the entire distribution. With theoretical distributions, the parameters
allow you to reconstruct exact distributions, while empirical distributions can usually be only
approximated. That’s the whole point of taking a sample: you want to reconstruct the “un-
derlying” probability distribution that generated the sample, in other words the (theoretical)
probability distribution of the population.

Different probability distribution families have a different number of parameters and dif-
ferent parameters. A probability family is an abstraction of specific probability distributions
that can be represented with the same set of parameters. An example of a probability distri-
bution family is the Gaussian [ga s on| probability distribution, also called the “normal”
distribution and nick-named the “bell-curve”, because it looks like the shape of a bell. Fig-
ure 19.1 should make this more obvious.

ggplot () +
aes(x = seq(-4, 4, 0.01), y = dnorm(seq(-4, 4, 0.01))) +
geom_path(colour = "sienna", linewidth = 2) +
labs(

x = element_blank(), y = "Density"

193

0.4

0.3
2
2 0.2
0]
(a)

0.1

0.0

-4 -2 0 2 4
Figure 19.1

The Gaussian distribution is a continuous probability distribution and it has two parameters:

o The mean, represented with the Greek letter p [mju]. This parameter is the proba-
bility’s central tendency. Values around the mean have higher probability than values
further away from the mean.

o The standard deviation, represented with the Greek letter o [s gmos|. This parameter
is the probability’s dispersion around the mean. The higher o the greater the spread
(i.e. the dispersion) of values around the mean.

You have already encountered means and standard deviations in Chapter 10. It is no co-
incidence that the go-to summary measures for continuous variables are the mean and the
standard deviation. When you don’t know exactly what the underlying distribution of a vari-
able is and all you want is a measure of central tendency and of dispersion, one assumes a
Gaussian distribution and calculates mean and standard deviations. Note that in most cases
we know a bit more than that and it fact the Gaussian distribution is very rare in nature. This
is why we will call it Gaussian and not “normal”, since it is only “normal” from a statistical-
theoretical perspective (it has simple mathematical properties that makes it easy to use in
applied statistics).

194

Gaussian distribution

The Gaussian distribution (also called “normal” and nick-named the “bell curve”) is a
continuous probability distribution family defined by a mean p and a standard deviation
.

Gaussian(j, o)

Figure 19.2 shows Gaussian distributions with fixed standard deviation (2) but different means
(-5, 0, 10) in Figure 19.2a and Gaussian distributions with fixed mean (5) but different SDs
(1, 2, 4) in Figure 19.2b. The mean shifts the distribution horizontally (lower values to the
left, higher values to the right), while the SD affects the width of the distribution: lower
SDs correspond to a narrower or tighter distribution, while higher SDs correspond to a wider
distribution. Since the total area under the curve has to sum to 1, if the distribution is
narrower, the peak will also be relatively higher, while with a wider distribution the peak will
be lower. You have seen this in Figure 18.4.

x <- seq(-10, 20, length.out = 1000)
means <- c(0, -5, 10)
sd_fixed <- 2

df _means <- crossing(x = x, mean = means) |[>
mutate (
y = dnorm(x, mean = mean, sd
mean = factor (mean)
) 1>

arrange(mean, x)

sd_fixed),

mu <- ggplot(df_means, aes(x = x, y = y, color = mean)) +
geom_line(linewidth = 1) +
labs(x = element_blank(), y = "Density", caption = "SD = 2.")

sds <- c(1, 2, 4)
mean_fixed <- 5

df_sds <- crossing(x = x, SD = sds) |[>
mutate (
y = dnorm(x, mean = mean_fixed, sd = SD),
SD = factor(SD)
) 1>

arrange(SD, x)

sig <- ggplot(df_sds, aes(x = x, y =y, color = SD)) +

195

geom_line(linewidth = 1) +
labs(x = element_blank(), y = "Density", caption = "Mean = 5.")

plot (mu)
plot(sig)
0.20 0.4
0.15 0.3
mean SD
> -2 .
% 0.10 % 0.2
o — 0 —_2
== 10 4
0.05 0.1
0.00 0.0
-10 0 10 20 -10 0 10 20
SD=2. Mean = 5.
(a) Different means, same SD. (b) Same mean, different SDs.

Figure 19.2: Illustrating Gaussian distributions with different means and standard deviations.

In statistical notation, we write the Gaussian distribution family like this:

Gaussian(p, o)

Specific types of Gaussian distributions will have specific values for the parameters p and o: for
example Gaussian(0,1), Gaussian(50, 32), Gaussian(2.5,6.25), and so on. All of these spe-
cific probability distributions belong to the Gaussian family. So hopefully you understand now
why we say that a distribution family stands for specific families: here Gaussian(u, o) stands
as the parent of all the specific Gaussian distributions (i.e. all of the Gaussian distributions
with a specific mean and SD).

19.2 Cumulative distribution function (CDF)

A useful way to investigate theoretical probability distributions is to ask what is the probability
that the random variable the probability represents is less than or equal to a certain value. For
example, for a distribution Gaussian(0,1) of the random variable X, what is the probability
that X is -1 or less? Figure 19.3 gives us a visual explanation: the size of the shaded area
under the density curve is the probability that X < —1. This works because the area under
the density curve must add to 1, so that the entire area under the curve covers 100% of the
probability distribution.

196

q <- -1
p <- pnorm(q)
1bl <- sprintf("P(X \u2264 %.0f) = %.4f", q, p)

df <- tibble(x = seq(-4, 4, length.out = 2000)) [>
mutate(dens = dnorm(x))

df_shade <- df |> filter(x <= q)

ggplot(df, aes(x, dens)) +
geom_line(linewidth = 1) +
geom_area(data = df_shade, aes(y = dens), alpha = 0.4) +
geom_vline(xintercept = q, linetype = "dashed") +
annotate("text", x = q - 3, y = dnorm(0) * 0.4, label = 1bl, hjust = 0) +
labs(
y = "Density", x = "X"

)
0.4 !
1
1
1
1
1
0.3 1
1
1
>
202
a
P(X <=-1) =0.1587
0.1
1
]
0.0 !
1
-4 -2 0 2 4
X

Figure 19.3: Illustration of the lower-tail probability with Gaussian(0, 1).

The mathematical function that calculates the probability that a variable is less than or equal
to a value is the cumulative distribution function (CDF). In R, you can get the CDF value
of a Gaussian distribution (i.e. the probability that X is less than or equal to any value)

197

with the pnorm() function (p for probability and norm for normal or Gaussian). The function
takes three arguments: the x value represented by the q argument, the mean and the SD of
the Gaussian distribution (the default are mean = 0 and SD = 1).

pnorm(q = -1, mean = 0, sd = 1)

[1] 0.1586553

or
pnorm(-1, 0, 1)

[1] 0.1586553

or
pnorm(-1)

[1] 0.1586553

Cumulative Distribution Function

The Cumulative Distribution Function (CDF) is a function that gives, for any value
x, the probability that the random variable X takes a value less than or equal to x.

Exercise 1

Calculate the probability that X is:

e less or equal than -2 with Gaussian(0, 1)
o less or equal than +1.75 with Gaussian(0,1).

o less or equal than 700 with Gaussian(900,200).

By default, pnorm () uses the lower-tail CDF: this returns the “less than or equal to” probability.
It’s on the “lower” tail of the distribution, or the tail to the left of the density peak. But we
can also compute the upper-tail probability. Figure 19.4 shows an upper-tail probability with
X > —1 with Gaussian(0,1). To obtain the upper-tail probability with pnorm(), rather than
the lower-tail probability, set lower.tail to FALSE.

198

pnorm(-1, lower.tail = FALSE)

[1] 0.8413447

g <= =il
p <- pnorm(qg, lower.tail = FALSE)
1bl <- sprintf("P(X \u2265 %.0f) = %.4f", q, p)

df <- tibble(x = seq(-4, 4, length.out = 2000)) |[>
mutate (dens = dnorm(x))

df_shade <- df |> filter(x >= q)

ggplot(df, aes(x, dens)) +
geom_line(linewidth = 1) +
geom_area(data = df_shade, aes(y = dens), alpha = 0.4) +
geom_vline(xintercept = q, linetype = "dashed")
annotate("text", x = q + 3, y = dnorm(0) * 0.4, label = 1bl, hjust = 0) +
labs(
y = "Density", x = "X"

+

)
0.4 - !
1
1
1
1
1
0.3- 1
1
1
>
202
A
P(X >=-1) = 0.841:
0.1-
0.0 -
T T I T T T
-4 -2 0 2 4
X

Figure 19.4: Illustration of an upper-tail probability with Gaussian(0, 1).

199

19.3 Intervals

Probability intervals provide a further way of locating and interpreting values within a prob-
ability distribution. They partition the distribution into regions associated with specified
probability levels. A quantile is a value below which a given proportion of the distribution
lies. You can think of this as the opposite of finding the probability given x: given the proba-
bility ¢, which is 7 For a continuous distribution like the Gaussian, the ¢-th quantile (denoted
Q(q)) is defined as the value x such that:

P(X<1)=¢q0<qg<1

which is, ¢ is the probability that the outcome X is less than or equal to z. So for example,
given a Gaussian distribution with mean 0 and SD 1, which is the 0.15th quantile? To calculate
a quantile, the quantile function is used. This is the inverse of the CDF. Figure 19.5 shows
that the 0.15th quantile of a Gaussian(0,1) distribution is approximately -1.04.

p <- 0.15
q <- gnorm(p)
1bl <- sprintf("Q(%.2f) = %.4f", p, Q)

df <- tibble(x = seq(-4, 4, length.out = 2000)) [>
mutate(dens = dnorm(x))

df_shade <- df |> filter(x <= q)

ggplot(df, aes(x, dens)) +
geom_line(linewidth = 1) +
geom_area(data = df_shade, aes(y = dens), alpha = 0.4) +
geom_vline(xintercept = q, linetype = "dashed") +
annotate("text", x = q - 2.5, y = dnorm(0) * 0.4, label = 1bl, hjust = 0) +
labs(
y = "Density", x = "X"
)

200

0.4

0.3
2
202 :
8)
Q(0.15) = -1.0364 1
1
1
0.1 :
1
1
1
1
0.0 !
1
-4 -2 0 2 4
X
Figure 19.5: The 0.15th quantile of Gaussian(0, 1).
Quantile

A quantile is a value below which a given proportion of a probability distribution lies.

Quantile function

The quantile function is the inverse of the Cumulative Distribution Function (CDF) and
returns a quantile.

Spotlight: PDF, CDF and quantile function of Gaussian distributions

You don’t really have to know the actual mathematical formulae of the PDF, CDF and
quantile function of a distribution, because the computation is done for you by the
respective R functions, but if you are mathematically inclined, here are the PDF, CDF
and quantile function of a Gaussian distribution.

PDF
1 (x —p)?
fz) = V2mo? P <_ 202)
CDF

201

F(z) = [1 —i—erf(:i?/%L)]

Qp)=p+ov2ef '(2p—1), 0<p<l1

N

Quantile function (inverse CDF)

In R, gnorm() returns quantiles using the quantile function. gqnorm() takes three arguments:
the probability, and the mean and SD of the Gaussian distribution (again, by default 0 and
1 respectively). As with pnorm(), you can obtain the upper-tail quantile with lower.tail =
FALSE. With a Gaussian distribution with mean 0 and SD 1, the upper-tail quantile value is
the same the lower-tail but with opposite sign. The following code shows how to use qnorm()
(the values are rounded to the second digit with round(2)).

Lower-tail quantile with Gaussian(0, 1)
gnorm(0.15) |> round(2)

[1] -1.04

Upper-tail quantile with Gaussian(0, 1)
gnorm(0.15, lower.tail = FALSE) |> round(2)

[1] 1.04

Lower-tail quantile with Gaussian(10, 2)
gnorm(0.15, 10, 2) [> round(2)

(1] 7.93

Upper-tail quantile with Gaussian(10, 2)
gnorm(0.15, 10, 2, lower.tail = FALSE) |> round(2)

[1] 12.07

202

19.3.1 Quartiles

Quartiles are quantiles that split the distribution into four quarters, each holding 25% of the
probability mass. With a Gaussian probability, the first quartile marks the point below which
25% of the area lies, the second quartile, also called the median (which you encountered in
Chapter 10), splits it at 50%, and the third quartile leaves 25% above it, so that it covers
75% of the area. Because of the symmetry of the Gaussian, the first and third quartiles are
equidistant from the mean. Figure 19.6 shows quartiles on a Gaussian distribution with mean
0 and SD 1. Note how the second quartile (Q2) splits the distribution in half: 50% of the
distribution is to the left of Q2 and the other 50% is to the right of it. The interval between
the first (Q1) and third quartile (Q3) is called the inter-quartile range (IQR), which indicates
the middle 50% of the probability distribution.

quartiles <- gnorm(c(0, 0.25, 0.5, 0.75, 1))
quart_labels <- c("Q1", "Q2 (median)", "Q3")

df <- tibble(x = seq(-4, 4, length.out = 2000)) |>
mutate(dens = dnorm(x))

df <- df |> mutate(
quartile = case_when(
x <= quartiles[2] ~ "Q1",
x <= quartiles[3] ~ "Q2",
x <= quartiles[4] ~ "Q3",
TRUE ~ "Q4"

ggplot(df, aes(x, dens, fill = quartile)) +
geom_area(alpha = 0.5) +
geom_line(linewidth = 1) +
scale_fill_brewer(type = "seq", direction = -1) +
geom_vline(xintercept = quartiles[2:4], linetype = "dashed", alpha = 0.5) +
annotate (
"label",
x = quartiles[2:4],
y =0.2,
label = c("Q1", "Q2", "Q3")
)
annotate (
"text",
x = c(-1.3, -0.35, 0.35, 1.3),
y = 0.05,

203

label = c("25%", "25%", "25)", "25%")
) +
annotate (
"errorbar",
xmin = quartiles[2], xmax = quartiles[4],
v = 0.d,
colour = "purple", linewidth = 1, width = 0.025
) +
annotate (
"text",
x=0,y=0.12,
label = "IQR"

)+
labs(
y = "Density", x = element_blank()
)
theme (legend.position = "none")
0.4 :
I
l
0.3
1
1
1
> 1
= 1
£ 0.2 [Q1] Q2] (Q3]
@] | | 1
1) 1
.
1 I I
25% :2596:2596: 25%
I I I
0.0 1 1 1

-4 -2 0 2 4

Figure 19.6: Quartiles of a Gaussian distribution.

To get the quartiles of a Gaussian distribution you can use the gnorm() function: a quartile
is just a type of quantile. Q1 corresponds to the 0.25th quantile, Q2 to the 0.5th and Q3 to
the 0.75th quantile.

204

gnorm(c(0.25, 0.5, 0.75)) |> round(2)

(1] -0.67 0.00 0.67

Quartiles

Quartiles are quantiles that split the distribution into four quarters, each holding 25%
of the probability mass.

Exercise 2

Calculate the quartiles of the following Gaussian distributions.

o Gaussian(10,2).
o Gaussian(900,200).

o Gaussian(—30,10).

19.3.2 Percentiles

Another type of quantile are percentiles. These split the probability in 100 percentiles, each
holding 1% of the probability mass. Percentiles are used to define central probability intervals,
i.e. probability intervals that leave equal probability in both tails of the distribution. It is
usually implied that you mean a central interval, so you don’t really have to say “central”
every time. A (central) 95% interval is defined as the interval between 2.5th and the 97.5th
percentile of the distribution. Figure 19.7 illustrates the 95% interval of Gaussian(0,1). The
shaded are is the 95% interval, while the two white areas at the tails hold each 2.5% of the
distribution, thus making the rest 5% of the distribution not included in the 95% interval.
Remember, probability intervals leave equal probability on both tails.

p <- 0.15

df <- tibble(x = seq(-4, 4, length.out = 2000)) |>
mutate(dens = dnorm(x))

df_shade <- df |> filter(x >= gnorm(0.025) & x <= gnorm(0.975))
ggplot(df, aes(x, dens)) +

geom_area(data = df_shade, aes(y = dens), alpha = 0.4) +
geom_line(linewidth = 1) +

205

annotate (
"label", x = 0, y = 0.15, label = "95Y, interval"
) +
annotate (
"text",
x = c(gqnorm(0.025) - 0.1, gnorm(0.975) + 0.15), y = 0.1,
label = c("2.5th", "97.5th")

) +
labs(
y = "Density", x = "X"
)
0.4-
0.3-
2>
202
@
o
959% interval
0.1-
0.0-
v - 0 : s
X
Figure 19.7: The 95% interval of Gaussian(0, 1).
Percentiles

Percentiles are quantiles that split the distribution into 100 quantiles, each holding 1%
of the probability mass.

206

Central probability intervals

Central probability intervals are intervals that leave equal probability in both tails of
the distribution.
A 95% interval is defined as the interval between the 2.5th and the 97.5th percentile.

Quiz 1
a. Which of the following percentiles define an 80% interval?
« (A) (0.1,0.9)
« (B) (0.2,0.8)
e (C) (0.05,0.95)
b. Which of the following percentiles define a non-central 85% interval?
« (A) (0.075, 0.925)
o (B) (0.1, 0.95)
e (C) (0.05, 0.95)
o (D) (0.15, 0.85)
b. Which interval do the 40th and 60th percentile define?

o (A) A 60% central interval.
e (B) A 20% non-central interval.
e (C) A 40% non-central interval.

o (D) A 20% central interval.

207

20 Bayesian inference

tistics

6«-&,

In Chapter 18 and Chapter 19 you learned about probabilities, probability distributions and
probability intervals. Statistical inference (Chapter 6) is built on probability, but, while proba-
bilities and distributions are precise mathematical concepts, their more philosophical interpre-
tation varies depending on which stance one adopts. Among the two most common approaches
to interpreting probability there are the frequentist and the Bayesian approach. Most of cur-
rent research is carried out with frequentist methods. This is a historical accident, based
on both an initial misunderstanding of Bayesian statistics (which is, by the way, older than
frequentist statistics) and the fact that frequentist maths was much easier to work with (and
personal computers did not exist). Despite the wide-spread use of frequentist statistics, this
textbook (and related course) teaches you statistics in the Bayesian approach. There are sev-
eral reasons for preferring Bayesian over frequentist statistics, both from a pedagogical and
practical perspective, but until you learn more about frequentist statistics in Chapter 29, you
will have to trust us for now.

a st

=
=
1]
il

Probabilities in a frequentist framework are about average occurrences of events in a hypo-
thetical series of repetitions of those events. Imagine you observe a volcano for a long period

208

of time. The number of times the volcano erupts within that time tells us the frequency of
occurrence of the event of volcanic eruption. In other words, it tells us its (frequentist) prob-
ability. In the Bayesian framework, probabilities are about the level of (un)certainty
that an event will occur at any specific time given certain conditions. This is probably the
way we normally think about probabilities: like in the weather forecast, if somebody tells you
tomorrow it will rain with a probability of 85%, you intuitively know that it is very likely
that it will rain tomorrow although it is not certain. In the context of research, a frequentist
probability tells you the probability of obtaining the same result again and again given an
imaginary series of replications of the study that generated that probability. On the other
hand, a Bayesian probability tells you the probability of your hypothesis given the results of
your study and your prior beliefs.

Bayesian inference approaches are now gaining momentum in many fields, including linguis-
tics. The main advantage of Bayesian inference is that it allows researchers to answer research
questions in a more straightforward way, using a more intuitive take on uncertainty and prob-
ability than what frequentist methods can offer. Bayesian inference is based on the concept
of updating prior beliefs in light of new data. Given a set of prior probabilities and
observations, Bayesian inference allows us to revise those prior probabilities and produce
posterior probabilities. This is possible through the Bayesian interpretation of proba-
bilities in the context of Bayes’ Theorem, which takes the name from Rev. Thomas Bayes
(1701-1771).

In simple conceptual terms, the Bayesian interpretation of Bayes’ Theorem states that the
probability of a hypothesis h given the observed data d is proportional to the product of the
prior probability of h and the probability of d given h.

P(h|d) ~ P(h) - P(d|h)

The prior probability P(h) represents the researcher’s beliefs towards h. These beliefs can be
based on expert knowledge, previous studies or mathematical principles.

Let’s see a practical example of Bayesian updating based on the “globe-tossing” scenario
described in McElreath (2020), Ch 2 (originally from Gelman, Nolan, and Nolan (2011)).
Imagine holding a small globe that represents Earth. You want to know what fraction of its
surface is covered by water. To estimate this, you adopt a simple method: toss the globe
into the air, and when you catch it, note whether the spot under your right index finger is
water (W) or land (L). Then toss it again and repeat. This process produces a sequence
of observations. For example, the first nine outcomes might be: WLWWWLWLW. In this
sequence, six outcomes are water and three are land. We call this sequence the data, i.e. d.
What we are trying to estimate here is the true proportion of water.

So what about our prior beliefs about the true proportion of water, i.e. P(h)? Let’s say that
our prior belief (assuming complete ignorance about the true proportion of water) is that all
proportions are equally probable. This is called a uniform prior, or a flat prior. You can

209

https://www.mathsisfun.com/data/bayes-theorem.html
https://en.wikipedia.org/wiki/Thomas_Bayes

see why in Figure 20.1. If you look at the top-right panel (the one with “n = 17), the dashed
line represents our prior belief: all proportions of water (on the z-axis) are equally probable,
so that the prior probability distribution is flat. Note that a probability of 0 means Earth
is all land, and a probability of 1 means Earth is all water. Now, let’s update the flat prior
distribution with the first observation in the globe-tossing exercise: the first outcome was W,
water. This observations corresponds to a distribution in which 1 has the greatest probability
and values below it have decreasing probability. This is represented in the top-right panel of
Figure 20.1 as the solid slanted line. This is P(d|h). If we combine the flat prior and the
probability of the data we get the dashed line in the second top panel (with “n = 2”). That
is the posterior probability distribution resulting from the Bayesian update at step “n = 1”.
This becomes the prior probability distribution at step “n = 2”.

Code adapted from: https://bookdown.org/content/4857/small-worlds-and-large-worlds.html#ba
sequence_length <- 50
d <- tibble(toss - C("W“, "l", "W", "W“, "W", "1", "W", "l", "W")) |>

mutate(n_trials 1:9,
n_success = cumsum(toss == "w"))

d >
expand_grid(p_water = seq(from = 0, to = 1, length.out = sequence_length)) |[>
group_by (p_water) [>
to learn more about lagging, go to:
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/lag
https://dplyr.tidyverse.org/reference/lead-lag.html
mutate(lagged n_trials lag(n_trials),
lagged_n_success = lag(n_success)) |[>
ungroup() |>

mutate (prior = ifelse(n_trials == 1, .5,
dbinom(x = lagged_n_success,
size = lagged_n_trials,
prob = p_water)),
likelihood = dbinom(x = n_success,

size = n_trials,
prob = p_water),
strip = str_c("n = ", n_trials)) |>
the next three lines allow us to normalize the prior and the likelihood,
putting them both in a probability metric
group_by(n_trials) [>
mutate(prior = prior / sum(prior),
likelihood = likelihood / sum(likelihood)) [>

210

plot!
ggplot(aes(x = p_water)) +
geom_line(aes(y = prior),
linetype = 2) +
geom_line(aes(y = likelihood)) +
scale_x_continuous("proportion water", breaks = c(0, .5, 1)) +
scale_y_continuous("plausibility", breaks = NULL) +
theme (panel.grid = element_blank()) +
facet_wrap(~ strip, scales = "free_y")

plausibility

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
proportion water

Figure 20.1: Bayesian updating of a prior based on observations. From McElreath (2020) and
Kurtz (2023).

Now let’s update our latest prior with the probability taken from the second observation: this
was L, land. The solid line in the second panel is the probability of getting a W and L: the
probability indicates that a proportion of 0.5 is the most probable. This makes sense: if in
two tosses you got one W and one L, then the most probable hypothesis is that there is 50%
of water and 50% of land. We combine again our prior (dashed line) with the data (solid line)
to obtain the dashed line in the third top panel. This is our new prior. The rest of the figure
shows how the prior gets updated at each new observation of W or L. You see that the highest
density of the dashed lines quickly moves to the right. They are now suggesting that the globe
has a higher proportion of water than land. Chapter 2 of McElreath (2020) goes into much

211

more details and I recommend you read that at some point if you feel this section felt a bit
too abstract.

Hopefully you can appreciate how different the frequentist and Bayesian approaches are: while
frequentist statistics focusses on the rejection of a null/nil hypothesis based on the probability
of the data given the hypothesis, or P(d|h), Bayesian statistics is about obtaining the prob-
ability of any hypothesis given the data, or P(h|d). You might also realise now that P(d|h)
appears in Bayes’ Theorem. But the theorem also includes the prior, P(h). This is totally
missing in the frequentist approach.

Quiz 1

a. What is the main conceptual difference between the frequentist and Bayesian inter-
pretations of probability?

o (A) Frequentist probability is about the likelihood of a hypothesis being true,
while Bayesian probability is about repeating an experiment infinitely.

o (B) Frequentist probability is about the frequency of outcomes in repeated trials,
while Bayesian probability is about the degree of certainty in an event given
conditions.

o (C) Frequentist probability uses prior beliefs, while Bayesian probability ignores
them.

o (D) Frequentist and Bayesian probability are mathematically identical and differ
only in terminology.

b. In the ‘globe-tossing’ example, what does a uniform prior (or flat prior) mean?

o (A) All proportions of water are considered equally probable before any data is
observed.

o (B) The Earth is assumed to be exactly 50% water and 50% land.
o (C) The probability of land is always higher than the probability of water.

o (D) The prior distribution automatically adjusts after the first observation.

c¢. Which element is present in Bayesian inference but absent in the frequentist ap-
proach?

e (A) The probability of the data given the hypothesis, P(d|h).

212

(B) The updating of prior beliefs in light of new data.

(C) The concept of hypothesis testing with a null hypothesis.

o (D) The use of repeated replications of a study.

213

21 Gaussian models

Area | Statistics m_x

In the context of a quantitative research study, a simple objective is to figure out the values
of the parameters of the probability distribution of the variable of interest: Voice Onset Time,
number of telic verbs, informativity score, acceptability ratings, reaction times, and so on.
Let’s imagine we are interested in understanding more about the nature of reaction times in
auditory lexical decision tasks (lexical decision tasks in which the target is presented aurally
rather than in writing). We can revisit the RT data from Tucker et al. (2019) to try and
address the following research question:

RQ: In a typical auditory lexical decision task, what are the mean and standard
deviation of reaction times (RTs)?

Now, you might wonder why the mean and the standard deviation? This is because we
are assuming that reaction times (i.e the population of reaction times, rather than our specific
sample) are distributed according to a Gaussian probability distribution. It is usually the onus
of the researcher to assume a probability distribution family. You will learn some heuristics
for picking a distribution family later depending on the general type of the variable of interest,
but for now the Gaussian family will be a safe assumption to make. In statistical notation, we
can write:

RT ~ Gaussian(p, o)

which you can read as: “reaction times are distributed according to a Gaussian distribution
with mean g and standard deviation o”. So the research question above is about finding the
values of © and o.

For illustration’s sake, let’s assume the sample mean and standard deviation are also the popu-
lation p and o: Gaussian(p = 1010, 0 = 318) (we calculated these in Chapter 11). Figure 21.1
shows the empirical probability distribution (in grey, this is a density curve calculated with
kernel density estimation) and the theoretical probability distribution (in purple) based on the
sample mean and SD: in other words, the purple curve is the density curve of the theoretical
probability distribution Gaussian(1010,318). We know by now that any sample mean and SD
is biased, due to uncertainty and variability. What we are really after is the values of u and
o which are the mean and standard deviation of the Gaussian distribution of the population

214

of RTs in auditory lexical decision tasks. In other words, we want to make inference from the
sample to the population of RTs.

mald <- readRDS("data/tucker2019/mald_1_1.rds")

rt_mean <- mean(mald$RT)

rt_sd <- sd(mald$RT)

rt_mean_text <- glue("mean: {round(rt_mean)} ms")
rt_sd_text <- glue("SD: {round(rt_sd)} ms")

x_int <- 2000

ggplot(data = tibble(x = 0:300), aes(x)) +
geom_density(data = mald, aes(RT), colour = "grey", fill = "grey", alpha = 0.2) +

stat_function(fun = dnorm, n = 101, args = list(rt_mean, rt_sd), colour = "#9970ab", linew:
scale_x_continuous(n.breaks = 5) +

geom_vline(xintercept = rt_mean, colour = "#1b7837", linewidth = 1) +

geom_rug(data = mald, aes(RT), alpha = 0.1) +

annotate (

"label", x = rt_mean + 1, y = 0.0015,
label = rt_mean_text,
fill = "#1b7837", colour = "white"
) +
annotate (
"label", x = x_int, y = 0.0015,
label = rt_sd_text,
fill = "#8c510a", colour = "white"

) +

annotate (
"label", x = x_int, y = 0.001,
label = "theoretical distribution",
£ill = "#9970ab", colour = "white"

) +

annotate (
"label", x = x_int, y = 0.0003,
label = "empirical distribution",
£ill = "grey", colour = "white"

) +

labs(

subtitle = glue("Gaussian distribution: mean = {round(rt_mean)} ms, SD = {round(rt_sd)}"
x = "RT (ms)", y = "Relative probability (density)"
)

215

Gaussian distribution: mean = 1010 ms, SD = 318
0.0020

0.0015 mean: 1010 ms SD: 318 ms

0.0010 theoretical distribution

0.0005

Relative probability (density)

N

| 1 0 F0
0 1000 2000 3000
RT (ms)

0.0000

Figure 21.1: Empirical and theoretical density distribution of reaction times.

21.1 Gaussian models

A statistical tool we can use to obtain an estimate of p and ¢ is a Gaussian model. A Gaussian
model is a statistical model that estimates the values of the parameters of a (theoretical)
Gaussian distribution, i.e. 4 and 0. We can provisionally describe the model using formulae,
like this:

RT ~ Gaussian(p, o)

= ..
o=..

Now, here is where things get interesting. Bayesian approaches to statistics assume uncertainty
in the parameters of the distribution one is estimating. So not only the observed values of
RT are uncertain because they come for a probability distribution, but the parameters of
the distribution are themselves uncertain. You can think of the mean and SD are uncertain
variables that need to be estimated from the data. When we say a variable is uncertain, we
describe it using a probability distribution. So the aim of a Gaussian model is to estimate the
probability distributions of the parameters from the data (and the priors), rather than just
their values.

216

RT ~ Gaussian(p, o)
o~ Ppy,0q)
g~ P+<,U’27 02)

We say that p comes from a probability distribution P(uq,0;,). We use a subscript 1 to
differentiate the mean and SD of the main Gaussian(u, o) distribution from the mean and SD
of the probability distribution of the mean p. Similarly, we say that o comes from a probability
distribution P, (y9,05): P, () is a (non-technical) way to indicate that the probability should
include only positive values. Why? Because SDs can only be positive. By specifying P, ()
we are constraining the probability distribution of ¢ to have positive values only. In sum, we
need to estimate two probability distributions, P(p,,0,) and P, (i, 0,). These are posterior
probability distributions. You will learn more about posterior probability distributions in
the next chapter. For now, just keep in mind that they are called posterior because the come
from the combination of priors and data.

In the rest of this book, you will be using the default prior probability distributions, or priors
for short, as set by brms, the R package we will use to fit Bayesian models. This means that
you will not have to worry about priors while you step your toes into the ocean of Bayesian
statistics. However, it is helpful to learn a bit of context in relation to priors. After all, one
of the big differences between frequentist and Bayesian statistics are indeed the priors (P(h)
in Bayes’ Theorem in Chapter 21). After learning about priors in this chapter, you can safely
assume that priors are handled by brms for you and you should not worry until after you
completed this course. Note that in actual research, thinking about priors is a necessary step,
even if one ends up using the default brms priors. Check out the Spotlight box to learn a bit
more about priors.

In the next chapter you will fit the Gaussian model of RTs using brms, with the default priors
as set by the package.

Quiz 1
a. Why is the distribution of o constrained to positive values only?
e (A) Because o is always zero.
o (B) Because o represents variability, which cannot be negative.
e (C) Because p is also constrained to be positive.
b. Why have we assumed that reaction times are Gaussian?

o (A) Because RTs are Gaussian.

217

o (B) Because it is easier to run the model.

o (C) Because a Gaussian distribution is a safe assumption to make.

o

. In Bayesian modeling, posterior probability distributions are described as:

e (A) The data alone.
o (B) Theoretical distributions chosen by the researcher before collecting data.

e (C) The combination of priors and observed data.

Prior probability distributions

How do we go about choosing priors for the model above? Once you know that you are
trying to estimate the (posterior) probability distribution of ;& and o you also know that
you should choose a prior for each parameter. In other words, each parameter in the model
gets its own prior. But what is a prior exactly? It is just a probability distribution! With
Gaussian models, it is common to use Gaussian probability distributions as the priors
for the mean and SD of the Gaussian distribution. Yes, you read right: we use Gaussian
distributions as priors for the parameters of the Gaussian distribution. Note that priors
should be chosen before seeing the data. Here, we have seen the data many times, so let’s
just pretend we haven’t. For example, let’s say that we believe that, prior to seeing the
data, the mean RT is a value from a Gaussian distribution with mean 900 ms and SD 200
ms: Gaussian(900,200). Do not worry as to how I came up with those numbers. Since
you will not need to choose priors yourself, for now just focus on understanding how priors
fit in Gaussian models. The Gaussian(900,200) distribution is shown in Figure 21.2.

xseq <- seq(0, 2000)

ggplot () +
aes(x = xseq, y = dnorm(xseq, 900, 200)) +
geom_path(colour = "darkgreen", linewidth = 1) +
labs(
x = element_blank(), y = "Density"
)

218

0.0020

0.0015

0.0010

Density

0.0005

0.0000
0 500 1000 1500 2000

Figure 21.2: The prior for u.

The prior distribution we have chosen for p says that values around 900 ms are more
probable than values away from 900. We can now pick a prior for o, the overall standard
deviation. Let’s say the SD can be described by a half-Gaussian prior probability with
mean 0 and SD 200. Why half? Because as we said earlier, SDs can only be positive and
with a Gaussian distribution with mean 0 we can just take the positive half to constrain
the distribution to positive values. It is also common for priors on standard deviations to
set the mean to 0 (to understand the reason, you will have to learn more about priors, so
we won't delve into this). Our half-Gaussian prior distribution is shown in Figure 21.3.

xseq <- seq(0, 750)

ggplot () +
aes(x = xseq, y = dnorm(xseq, 0, 200)) +
geom_path(colour = "darkorange", linewidth = 1) +
labs(
x = element_blank(), y = "Density"
)

219

0.0020

0.0015

ity

0.0010

Dens

0.0005

0.0000

200 400

Figure 21.3: The prior for o.

600

The prior for ¢ indicates that we expect values closer to zero to be more probable that
larger values. We can rewrite the model formulae above as:
RT ~ Gaussian(u, o)

u ~ Gaussian (900, 200)

[Prior for y
o ~ HalfGaussian(0, 200)

[Prior for o]

220

22 Fitting Gaussian models with brms

Arca [EIRE m;

In the previous chapter, I have introduced the theory behind Bayesian Gaussian models. In
this chapter, you will learn how to fit Gaussian models in R. You can fit a Gaussian model to
data in R using the brms package (the name is an initialism of “Bayesian Regression Models
using Stan”; Gaussian models are a special type of regression models, which will be introduced
in Chapter 23).

The brms package can run a variety of Bayesian (regression) models. It is a very flexible
package that allows you to model a lot of different types of variables. You don’t really need to
understand all of the technical details to be able to effectively use the package and interpret
the results, so this textbook will focus on how to use the package in the context of research.
We will cover some of the technicalities, but if you are are particularly interested in the inner
workings of the package, feel free to find materials on specific aspects by searching online.
One useful thing to know is that brms is a bridge between R and the statistical programming
software Stan. Stan is a powerful piece of software that can run any type of Bayesian model,
not just regressions. What brms does is that it allows you to write Bayesian models in R,
which are translated into Stan models and run with Stan under the hood. You can safely use
brms without learning Stan, but if you are interested, you can check Ch 8-10 of Nicenboim,
Schad, and Vasishth (2025) and the Stan documentation.

Installation of brms

The brms package relies on software that is external to R (the C++ toolchain) so you
will have to install this extra software separately for brms to work. Following the C++
toolchain installation instructions for your operating system.

Install the C+-+ toolchain

Windows

o For Windows, install the RTools version for your R version (the RTools and R
version should match): https://cran.r-project.org/bin/windows/Rtools/.

macQOS

e For macOS, open the Terminal app and write the following line then press en-
ter /return:

221

https://paulbuerkner.com/brms/
https://mc-stan.org
https://bruno.nicenboim.me/bayescogsci/ch-introstan.html#ch-introstan
https://mc-stan.org
https://cran.r-project.org/bin/windows/Rtools/

xcode-select —--install

e You’ll see a panel that asks you to install the Xcode Command Line Tools. Install
them. Downloading and installation will take 30 to 60 minutes.

Linux

 For Linux, follow the instructions here: https://github.com/stan-dev/rstan/wiki
/Configuring-C-Toolchain-for-Linux

Install brms

Now install brms in R with the usual method.

Check the C++ installation

To check that the C++ installation was successful, run the following code in the RStudio
Console.

library (brms)
fitl <- brm(count ~ zBase, prior = prior(normal(0, 10), class = b), data =
If everything is well, you will see Compiling Stan program... and Start sampling in

the console and the object £it1 should show up in the Environment tab when sampling
is done.

€

pilepsy, chain

You can run a Bayesian Gaussian model with the brm() function, short for “Bayesian Re-

gression Model” (a Gaussian model is a special type of regression model). The mandatory

arguments of brm() are a model formula, a distribution family (of the outcome variable), and
the data you want to run the model with. Running a model with data is also formally known
as fitting the model to the data. We want to fit a Gaussian model to reaction times from
Tucker et al. (2019). Let’s revisit the mathematical formula of the model from Chapter 21

(let’s discard the priors; see the R Note box below):

RT ~ Gaussian(u, o)
It would be nice if brms () allowed you to write the formula like that.
This would be nice, but it won't work!
brm (

RT ~ Gaussian(mu, sigma),
data = mald

222

https://github.com/stan-dev/rstan/wiki/Configuring-C-Toolchain-for-Linux
https://github.com/stan-dev/rstan/wiki/Configuring-C-Toolchain-for-Linux

Alas, due to historical and technical reasons of how other R packages write model formulae,
you need to use a special way of specifying the model. As mentioned, you need three arguments:
a model formula, the distribution family of the outcome, and the data. So the mathematical
formula is split in two parts (corresponding to two arguments of the brm() function): formula
and family.

brm (
formula = RT ~ 1,
family = gaussian,
data = mald

e RT ~ 1 and family = gaussian simply tell brms to model RT using a Gaussian dis-
tribution. This means that the probability distribution of the mean and the standard
deviation of the Gaussian distribution of RTs will be estimated from the data. RT ~
1 might look very weird to you right now, but it will become clear in the next couple
of chapters why it is that way. For now, just accept that that is the way you write a
Gaussian model in R.

o We specify the data with data = mald.

As with other R functions, we want to assign the output of brm() to a variable, here rt_bm.
We will then be able to inspect the output in rt_bm. Now run the Gaussian model of RTs
(don’t forget to attach the brms package and read the data, like in the following code).

library(brms)
mald <- readRDS("data/tucker2019/mald 1 1.rds")

rt_bm <- brm(
RT ~ 1,
family = gaussian,
data = mald

When you run the code, some text will be printed below the code in your Quarto document.
This is what it looks like.

Compiling Stan program...
Start sampling

SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).

Chain 1:
Chain 1: Gradient evaluation took 0.000156 seconds

223

Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.56 seconds.
Chain 1: Adjust your expectations accordingly!

Chain 1:

Chain 1:

Chain 1: Iteration: 1/ 2000 [0%] (Warmup)

Chain 1: Iteration: 200 / 2000 [10%] (Warmup)

Chain 1: Iteration: 400 / 2000 [20%] (Warmup)

<more text omitted>

The messages in the text are related to Stan and the statistical algorithm used by Stan to
estimate the parameters of the model (in this model, these are the mean and the standard
deviation of RTs). Compiling Stan program... tells you that brms has instructed Stan to
compile the model specified in R and that Stan is now compiling the model to be run on the
data (don’t worry if this does not make sense). Start sampling tells us that the statistical
algorithm used for estimation has started. This algorithm is the Markov Chain Monte Carlo
algorithm, or MCMC for short. The algorithm is run by default four times; in technical terms,
four MCMC' chains are run. This is why information on Chain 1, 2, 3, and 4 is printed. We
will treat MCMC in more details in Chapter 25.

Now that the model has finished running and that the output has been saved in rt_bm, we
can inspect it with the summary () function (note that this is different from summarise()!).

summary (rt_bm)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: RT ~ 1
Data: mald (Number of observations: 5000)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error 1-95J CI u-95% CI Rhat Bulk_ESS Tail ESS
Intercept 1010.50 4.45 1001.66 1019.26 1.00 3628 2476

Further Distributional Parameters:
Estimate Est.Error 1-95J% CI u-95% CI Rhat Bulk_ESS Tail_ ESS
sigma 317.88 3.17 311.74 324.17 1.00 4064 2571

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential

224

scale reduction factor on split chains (at convergence, Rhat = 1).

Let’s break down the summary bit by bit:
e The first few lines are a reminder of the model we fitted:

— Family is the chosen distribution for the outcome variable (RT in our model), here
a Gaussian distribution.

— Links lists the link functions. You don’t need to worry about these now.
— Formula is the model formula.
— Data reports the name of the data and the number of observations.

— Finally, Draws has information about the MCMC algorithm. Again, you can discard
those for now.

e Then, the Regression Coefficients are listed as a table. They are called regression
coeflicients because brms fits Bayesian regression models and a Gaussian model is a
special type of regression model (you will learn about regression models in later chapters).
In the Gaussian model we fitted now, we only have one regression coefficient, Intercept,
which corresponds to p from the formula above (for the reason why it is called that way,
you will have to wait until regression models are introduced in the following chapter, I
apologise for the many promissory explanations...). You will learn how to interpret the
Regression Coefficients table below.

e Then Further distributional parameters are also in the form of a table. Here we
only have sigma which is ¢ from the formula above. The table has the same columns as
the Regression Coefficients table.

22.1 Posterior probability distributions

The main characteristic of Bayesian models is that they don’t just provide you with a single
numeric estimate for the model parameters. As mentioned in Chapter 21, the model estimates
a full probability distribution for each parameter/coefficient. These probability distributions
are called posterior probability distributions (or posteriors for short). They are called
posterior because they are derived from the data and the prior probability distributions. The
model we fitted has two parameters: the mean p and the standard deviation o. For reasons
that will become clear in Chapter 23, the y parameter is called Intercept in the summary:
you can find it in the Regression Coefficients table. The standard deviation o is in the
Further distributional parameters table.

225

Posterior probability distribution

A posterior probability distribution is a probability distribution of a model parame-
ter estimated by a Bayesian model from the prior probability distribution and the data.

The Regression Coefficients table reports, for each estimated coefficient, a few summary
measures of the posterior distributions of the estimated coefficients. Here, we only have the
summary measures of one posterior: the posterior of the model’s mean u. The table also has
three diagnostic measures, which you can ignore for now.

Here’s a breakdown of the table’s columns:

o Estimate, the mean estimate of the coefficient (i.e. the mean of the posterior distribution
of the coefficient). In our model, this is the mean of the posterior distribution of the
mean g (Intercept). Yes, you read correctly: the mean of the mean! Remember,
Bayesian models estimate a full posterior probability distribution and the posterior can
be summarised by a mean and a standard deviation. In this model, the posterior mean
(short for mean of the posterior probability distribution) of x is 1010.5 ms.

e Est.error, the error of the mean estimate, or estimate error. The estimate error is the
standard deviation of the posterior distribution of the coefficient (here the mean p). Yes,
the standard deviation of the mean! Again, since we are estimating a full probability
distribution for p, we can summarise it with a mean and SD as we do for any Gaussian
distribution. In this model, the posterior SD of i is 4.45 ms. Be careful: this SD is not
o. It is the standard deviation of the posterior distribution of the mean pu.

e 1-95% CI and u-95% CI, the lower and upper limits of the 95% Bayesian Credible Inter-
val (more on these below).

¢ Finally, Rhat, Bulk_ESS, Tail_ESS are diagnostics of the MCMC chains, which you can
ignore for now.

The Further distributional parameters table has the same structure. In this model, the
posterior mean of ¢ is 317.88 ms and the posterior SD of ¢ is 3.17 ms.

Putting all this together in mathematical notation:

RT ~ Gaussian(u, o)
4t ~ P(1010.5, 4.45)
o ~ P(317.88,3.17)

In other words, according to the model and data, the mean or RTs is a value from the dis-
tribution P(1010.5,4.45) and the SD of RTs is a value from the distribution P(317.88,3.17).
Here, P() stands for a generic posterior probability distribution. The model has quantified
the uncertainty around the value of the u and o parameters and this uncertainty is reflected

226

by the fact that we get a full posterior probability distribution (summarised by its mean and
SD) for each of the parameters. We don’t know ezactly the values of the parameters of the
Gaussian distribution assumed to have generated the sampled RTs.

R Note: Default priors in brms

One major aspect of Bayesian modelling is the combination of prior knowledge with
evidence from the observed data. As introduced in Chapter 21, choosing priors is an
important step in conducting Bayesian analyses. However, in this textbook we will not
deal with prior specification given the quite tight schedule of the course.

If prior specification is a necessary step, how come we are not doing that? When fitting
Bayesian models with brms, you are in fact using brms default priors. These are generic
priors that work in most circumstances and they are equivalent to prior probability
distributions that are almost flat (like in the first prior of Figure 20.1). In other words,
they are so generic that they have very little influence on the posterior distribution, but
still they help with the computational aspects of model fitting (which you will learn more
about in Chapter 25).

If you want to inspect brms default priors, you can use the get_prior () function. Let’s
do this for the model we fitted above. The function requires the model formula, the
family and the data, much like the brm() function. It returns a data frame with one
prior per row. The columns of interest are prior and class.

get_prior(
RT ~ 1,
family = gaussian,
data = mald

)
prior class coef group resp dpar nlpar 1lb ub source
student_t(3, 935.5, 220.2) Intercept default
student_t(3, 0, 220.2) sigma 0 default

There are two priors, one for the intercept (1) and one for o (see class column). For both
w and o, brms sets a Student-¢ prior probability distribution. The Student-¢ distribution
is a continuous probability distribution with three parameters: the degrees of freedom,
the mean and the standard deviation. You will encounter the Student-t distribution in
Chapter 29, where you will learn about frequentist p-values. For now, it will suffice to say
that a Student-¢ distribution (also simply called a t-distribution) is similar to a Gaussian
distribution (hence the two parameters, mean and SD).

Normally, you would choose priors before collecting/seeing the data. Here, brms actually
uses the data to come up with generic priors that cover a wide range of values without
including very unlikely values. Yet, the priors set by brms are so generic that, as said
above, they bear very little effect on the posterior. So they are safe to use, even if they

227

are based on the data itself. Just remember, thought, that if you do want to specify your
own priors, you must do so independent of the data (ideally, even before you have access
to the data, whether you collect it yourself or whether it is pre-existing).

For this model and data, brms sets a t-distribution for the prior of the mean u, with
mean 935.5 and SD 220.2, and a t-distribution for the SD o, with mean 0 and SD 220.2.
You will notice that the SDs of both priors are the same. The following figures illustrate
the density curve of the priors.

x_mu <- seq(0, 2000)

ggplot () +
aes(x = x_mu, y = extraDistr::dlst(x_mu, 3, 935.5, 220.2)) +

geom_path(linewidth = 1) +
labs(
x = element_blank(), y = "Density"

x_sigma <- seq(0, 1500)

ggplot () +
aes(x = x_sigma, y = extraDistr::dlst(x_sigma, 3, 0, 220.2)) +
geom_path(linewidth = 1) +
labs(
x = element_blank(), y = "Density"

0.0015 - 0.0015-

0.0010 - 0.0010-

Density
Density

0.0005 - 0.0005 -

0.0000 - 0.0000-

' ' ' ' ' ' ' ' '
0 500 1000 1500 2000 0 500 1000 1500

(a) Prior probability distribution for the mean. (b) Prior probability distribution for the SD.

Figure 22.1: Default brms priors for this chapter’s model and data.

228

22.2 Plotting the posterior distributions

While the model summary reports summaries of the posterior distributions, it is always helpful
to plot the posteriors. We can easily do so with the base R plot () function, like in Figure 22.2.
The density plots of the posteriors distributions of the two parameters estimated in the model
are shown on the left of the figure: b_Intercept which corresponds to Intercept from the
summary and sigma (the reason for why it’s b_Intercept will become clear in Chapter 23).

plot(rt_bm, combo = c("dens", "trace"))

o) Rl e

oo o RO

00885 1000 1005 1010 1015 1020 0 200 400 600 8001000 — 1
— 2

. sigma 0. sigma — 3

vare) o Mr\whlmhn"l')l.wa'ﬂ

oae] ol W'WM'”’N"W‘J‘W"lf#f"w-“"4

310 315 320 325 0 200 400 600 8001000

Figure 22.2: Posterior plots of the rt_ bm Gaussian model

For the b_Intercept coefficient, i.e. the mean pu, the posterior probability encompasses values
between 1000 and 1020 ms, approximately. But some values are more probable than others:
the values in the centre of the distribution have a higher probability density then the values
on the sides. The mean of that posterior probability distribution is the Estimate value in the
model summary: 1010.5 ms. Its standard deviation is the Est.error: 4.45 ms. The mean
indicates the value with the highest probability density, which corresponds to the value on the
horizontal axis of the density plot below the highest peak of the density curve. Based on these
properties, values around 1010.5 ms are more probable than values further away from it.

For sigma, i.e. o, the posterior probability covers values between 310 and 325. What is
the mean of the posterior probability of ¢? The answer is in the summary, in Further

229

distributional parameters. There you will also find the standard deviation of the poste-
rior of ¢. That’s a standard deviation of a standard deviation! As before, this is because we
are not estimating a simple value for o but a full (posterior) probability distribution and we
can summarise this distribution with a mean and a standard deviation. Again, the highest
peak in the distribution corresponds to the Estimate value.

Now, looking at a full probability distribution like that is not very straightforward and sum-
mary measures can be even less straightforward. Credible Intervals (Crls) help summarise the
posterior distributions so that interpretation is more straightforward.

22.3 Interpreting Credible Intervals

The model summary reports the Bayesian Credible Intervals (Crls) of the posterior
distributions. Another way of returning summaries of the coefficients is to use the
posterior_summary() function which returns a table (technically, a matrix, another type
of R objects; we print only the first two rows with [1:2,] because we can ignore the other
ones).

posterior_summary(rt_bm) [1:2,]

Estimate Est.Error Q2.5 Q97.5
b_Intercept 1010.5015 4.452312 1001.6555 1019.2559
sigma 317.8845 3.171714 311.7382 324.1688

A Bayesian Crl is simply the central probability interval of a posterior probability distribution.
You have encountered intervals in Chapter 19. By default, brms prints the 95% Crls: these are
the 95% central probability intervals of the posterior probability of each coefficient. The 95%
CrlI of the b_Intercept is between 1002 and 1019. This means that there is a 95% probability,
or (equivalently) that we can be 95% confident, that the Intercept, i.e. u, is within that range,
given the model and data. For sigma, i.e. o, the 95% CrI is between 312 and 324. So, again,
there is a 95% probability that the sigma value is between those values, given the model and
data. So, to summarise, a 95% Crl tells us that we can be 95% confident, or in other words
that there is a 95% probability, that the value of the coefficient is between the values of the
Crl.

There is nothing special about 95% Crl and in fact it is recommended to calculate and report
a few of them. Personally, I use 90, 80, 70 and 60% Crls. You can get any Crl with the
summary () and the posterior_summary() functions, but you will also learn an alternative
and more succinct way in Chapter 24. Here is how to get an 80% Crl with summary ().

230

summary (rt_bm, prob = 0.8)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: RT ~ 1
Data: mald (Number of observations: 5000)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error 1-80% CI u-80% CI Rhat Bulk_ESS Tail ESS
Intercept 1010.50 4.45 1004.74 1016.14 1.00 3628 2476

Further Distributional Parameters:

Estimate Est.Error 1-80% CI u-80% CI Rhat Bulk ESS Tail ESS
sigma 317.88 3.17 313.84 321.89 1.00 4064 2571
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

For posterior_summary (), you specify the percentiles rather than the probability level.

posterior_summary(rt_bm, probs = c(0.1, 0.9))[1:2,]

Estimate Est.Error Q10 Q90
b_Intercept 1010.5015 4.452312 1004.7400 1016.1351
sigma 317.8845 3.171714 313.8399 321.8941

Here you have the results from the regression model. Really, the results of the model are the
full posterior probabilities, but it makes things easier to focus on the Crls. If you are used
to frequentist statistics (either from learning how to run them or from reading frequentist
analyses in academic papers) this might seem a bit underwhelming. But this is the core
thinking of Bayesian statistics: inference is based on full probability distributions for the
model’s parameters, rather than on a single value (like a p-value).

231

22.4 Reporting

What about reporting the model in writing? We could report the model and the results like
this (for simplicity, we report only the 95% Crls here. You will learn how to report multiple
Crls in tables later).!

We fitted a Bayesian Gaussian model of reaction times (RTs) using the brms pack-
age (Biirkner 2017) in R (R Core Team 2024). The model estimates the mean and
standard deviation of RTs.

Based on the model results, there is a 95% probability that the mean is between
1002 and 1019 ms (mean = 1011, SD = 4) and that the standard deviation is
between 312 and 324 ms (mean = 318, SD = 3).

The example used in this chapter is quite trivial: we are just estimating a mean and SD from
the data, but in order to understand how to answer more involved questions it is fundamental
that you understand what was covered in this chapter. So make sure to have grasped the
basics of Gaussian models before moving onto regressions in Chapter 23. On the other hand,
if you will ever be asked what we can expect RTs in a auditory lexical decision task to look like
you might be able to say that, based on the model and data in this chapter, we can be quite
confident that they will have a mean of about 1010 ms and an SD of about 320 ms. You might
think this was a lot of work to just learn about what we knew directly from the sample, and
it is, but be reassured that in normal research contexts things are always much more complex
than this, so it is indeed worth the effort.

Quiz 1
a. Which function is used to fit Bayesian models?
e (A) brms()
e (B) brm(O)
e (C) bmO)
b. The Estimate column in further distributional parameters is:

e (A) The mean of the posterior distributino of the mean.
o (B) The standard deviation of the posterior distribution of the mean.

e (C) The mean of the posterior distribution of the standard deviation.

1To know how to add a citation for any R package, simply run citation("package") in the R Console, where
"package" is the package name between double quotes.

232

. The posterior of each parameter is the value in the Estimate column. TRUE /
FALSE

. Only 95% CrI should be used for inference. TRUE / FALSE
. To fit a Gaussian model, the formula has the form y ~ 1. TRUE / FALSE

. The intercept corresponds to the parameter y. TRUE / FALSE

233

Part V

Week 5

234

23 Introduction to regression

Area Statistics

In the previous chapters, you have learned the basics of probability and how to run Gaussian
models to estimate the mean and standard deviation (x and o) of a variable. This chapter
extends the Gaussian model to what is commonly called a Gaussian regression model (or
simply regression model). Regression models (including the Gaussian) are models based on
the equation of a straight line. This is why regression models are also called linear models.
Regression models allow you to model the relationship between two or more variables. This
textbook introduces you to regression models of increasing complexity which can model vari-
ables frequently encountered in linguistics. Note that regression models are very powerful and
flexible statistical models which can deal with a great variety of types of variables. Appendix B
has a regression cheat sheet which you will be able to consult, after completing this course, as
a guide for building a regression model based on a set of questions. For now, let’s dive into
the basics of a regression model.

23.1 A straight line

A regression model is a statistical model that estimates the relationship between an outcome
variable and one or more predictor variables (more on outcome/predictor below). Regression
models are based on the equation of a straight line.

y=mx+c

An alternative notation of the equation is:

y =0+ 06z

B is the Greek letter beta [bi to]: you can read f, as “beta zero” and ; “beta one”. In this
formula, 3, corresponds to c and 3, to m in the first notation. We will use the second notation
(with 8, and ;) in this book, since using ’s with subscript indexes will help understand the
process of extracting information from regression models later.!

Yet other notations are y = a + bx and y = o + Bz.

235

23.2 Back to school

You might remember from school when you were asked to find the values of y given certain
values of z and specific values of 3, and 3;. For example, you were given the following formula
(the dot - stands for multiplication; it can be dropped so 2 - x and 2z are equivalent):

y=3+2-x

and the values z = (2,4,5,8,10,23,36). The homework was to calculate the values of y and
maybe plot them on a Cartesian coordinate space.

library(tidyverse)

line <- tibble(
x = c(2, 4, 5, 8, 10, 23, 36),
y=3+2 %x

)

gegplot(line, aes(x, y)) +
geom_point(size = 4) +
geom_line(colour = "red") +
labs(title = bquote(italic(y) == 3 + 2 * italic(x)))

y =3+2X

60 -

>\4o-

20-

10 20 30

236

Using the provided formula, we are able to find the values of . Note that in y = 3 4+ 2 % z,
By = 3 and B; = 2. Importantly, 3, is the value of y when x = 0. 3, is commonly called the
intercept of the line. The intercept is the value where the line crosses the y-axis (the value
where the line “intercepts” the y-axis).

y=3+ 2z
=3+2-0
=3

And B, is the number to add to the intercept for each unit increase of x. ; is commonly
called the slope of the line.? Figure 23.1 should clarify this. The dashed line indicates the
increase in y for every unit increase of x (i.e., every time z increases by 1, y increases by 2).

line <- tibble(
x = 0:3,
y=3+2 %x
)

ggplot(line, aes(x, y)) +

geom_point(size = 4) +

geom_line(colour = "red") +
c(0, 0, 1), y = c(3, 5, 5), linetype = "dashed") +
=c(1, 1, 2), y = c(5, 7, 7), linetype = "dashed") +
c(2, 2, 3, y=c(7, 9, 9), linetype = "dashed") +
annotate("text", = 0.25, y = 4.25, label = "+2") +
annotate("text", = 1.25, y = 6.25, label = "+2") +
annotate("text", x = 2.25, y = 8.25, label = "+2") +
scale_y_continuous(breaks = 0:15) +
labs(title = bquote(italic(y) == 3 + 2 * italic(x)))

annotate("path",
annotate("path",
annotate("path",

Ca T T T T
I

2Mathematically, it is called the gradient, but in regression modelling the word slope is commonly used.

237

X

Figure 23.1: Illustration of the meaning of the slope: with a slope of 2, for each unit increase
of x, y increases by 2.

Equation of a line

y= 05+ 5

where [is the line intercept and 3, is the line slope.

Of course, we can plug in any value of z in the formula to obtain y. The following equations
show y when «x is 1, 2, and 3. You see that when you go from z =1 to x = 2 we go from y =5
toy=7:7—5=2, our slope j3;.

y=3+2-1
=3+2
=5

y=3+2-2
=3+4
=7

y=3+2-3
=3+6
=9

238

Now, in the context of research, you usually start with a sample of measures (values) of = (the
predictor variable) and y (the outcome variable), rather than having to calculate y. Then you
have to estimate (i.e. to find the values of) f, and S, of the model formula y = g, + f;x

This is what regression models are for: given the sampled values of y and z, the model
estimates [, and f3;.

Exercise
e Go to the web app Linear Models Illustrated.

e In the first tab, “Continuous”, you will find instructions on the left and a plot on
the right. The plot on the right is the plot resulting from the parameters specified
to the left.

e Play around with the intercept and slope parameters to see what happens to the
line with different values of the intercept /3, and the slope j3;.

Quiz 1

Use the Linear Models Illustrated app to answer the following questions.
a. What happens to the line when you increase the intercept (3,7
e (A) The whole line shifts downwards.
o (B) The line becomes steeper.

o (C) The whole line shifts upwards.

e (D) The line becomes flat.
b. What happens to the line when you set the slope 3; to a negative number?

e (A) The line decreases from left to right.
o (B) The whole line becomes flat.
e (C) The whole line shifts downwards.

o (D) The line increases from left to right.
b. What happens to the line when you set the slope 3, to 0 zero?

e (A) The whole line shifts downwards.

239

https://stefanocoretta.shinyapps.io/lines/
https://stefanocoretta.shinyapps.io/lines/

o (B) The line decreases from left to right.
o (C) The line becomes steeper.

o (D) The line becomes flat.

23.3 Add error

Measurements are noisy: they usually contain errors. Error can have many different causes
(for example, measurement error due to technical limitations or variability in human be-
haviour), but we are usually not that interested in learning about what causes the error.
Rather, we just want our model to be able to deal with error. Let’s see what errors looks like.
Figure 23.2 shows values of y simulated with the equation y = 1+ 1.5z (with = equal 1 to 10),
to which the random error € (the Greek letter epsilon | ps1n]) was added. Due to the added
error, the points are almost on the straight line defined by y = 1 + 1.5z, but not quite. The
vertical distance between the observed points and the expected line, called the regression
line, is the residual error (red lines in the plot).

set.seed(4321)
x <- 1:10
y <= (1 + 1.5 * x) + rnorm(10, 0, 2)

line <- tibble(
X = X,
y=Y3

)

m <- lm(y ~ x)
yhat <- m$fitted.values
diff <- y - yhat
ggplot(line, aes(x, y)) +
geom_segment (aes(x = x, xend = x, y =y, yend = yhat), colour = "red") +
geom_point(size = 4) +
geom_smooth(method = "1lm", formula = y ~ x, se = FALSE) +
scale _x_continuous(breaks = 1:10) +
labs(title = bquote(italic(y) == 1 + 1.5 x italic(x) + epsilon))

240

y=1+1.5x+¢

15-

10-

Figure 23.2: Hlustration of residual error.

When taking into account error, the equation of a regression model becomes the following:

y=po+ Pz +e

where € is the error. In other words, y is the sum of /3, #,2 and some error. In regression
modelling, the error € is assumed to come from a Gaussian distribution with mean 0 and
standard deviation ¢ when y is assumed to be generated by a Gaussian distribution: € ~
Gaussian(p = 0,0). We can substitute e for the distribution.

y = By + Pz + Gaussian(0,0)

Furthermore, this equation can be rewritten like so (since the mean of the Gaussian error is
0):

y ~ Gaussian(j, o)
p= By + b

You can read those formulae like so: “The variable y is distributed according to a Gaussian
distribution with mean p and standard deviation o¢. The mean p is equal to the intercept
By plus the slope 3, times the variable x.” This is a Gaussian regression model, because the

241

assumed family of the outcome y is Gaussian. Now, the goal of a (Gaussian) regression model
is to estimate /3, 5, and o from the data (i.e. from the values of x and y). In other words,
regression models find the regression line based on the observations of y and z. We do not
know what is the true regression line that has generated y and x, we just have y and x values.

The y ~ Gaussian(u, o) line in the formulae above is exactly the formula you saw in Chapter 21.
It is no coincidence: this is Gaussian regression model. The outcome variable y is assumed
to be Gaussian. The new building block we have added now is that p depends on z: this
is because x appears in the formula of p. In other words, we are allowing the mean u to
vary with 2. This is expressed by the so-called regression equation (also linear equation):
i = By + Byz. This is the core concept of regression models.

Regression model

y ~ Gaussian(, o) [Distribution of y]
w=PBy+ Bz [Regression equation]

You perhaps realised this by now, but the regression equation implies that both y and x
are numeric variables. However, regression models can also be used with variables that are
categorical. You will learn how to use categorical predictors (categorical x’s) in regression
models in Week 7’s chapters. Moreover, regression models are not limited to the Gaussian
distribution family and in fact regression models can be fit with virtually any other distribution
family. The chapters of Week 8 will teach you how to fit two other useful distribution families:
the log-normal family and the Bernoulli family. You will be able to learn about other families
by checking the resources linked in Appendix B.

Spotlight: Regression, eugenics and racism

Galton and regression

The basic logic of regression models is attributed to Francis Galton (1822-1911). Galton
studied the relationship between the heights of parents and their children (Galton 1980,
1886). He noticed that while tall parents tended to have tall children, the children’s
heights were often closer to the average height of the population. This phenomenon,
which he called “regression toward mediocrity” (now known as “regression to the mean”),
showed that extreme values (e.g., very tall or very short parents) were less likely to be
perfectly transmitted to the next generation.

242

DEVIATE
n
inches
+ 4
+3
+2
+1
o
1
2
3
&

—
-

B
D
)

Fig.(2)

When Mid Parents are shorter than mediocrit
their Children tend to be taller than they.

their Mid-Parents as 2 to 3.

o

The Deviates of the Children are to those of

their Children tend to be shorter than they.

RATE OF REGRESSION IN HEREDITARY STATURE.
When Mid-Parents are taller than mediocrity,

= © <
- T T T I 1 I T I
o of 7]
O el | o ® ® I © “
og | & N g o o < ® ©
¥ 4

The core idea of Galton’s framework can be expressed as a regression model:

y=0y+p-x+e

where:

o y: the child’s height (response variable),

o x: the average of the parents’ heights (predictor variable),

e [, the intercept (the expected height of a child when the parents’ height is at the
mean),

o [;: the slope, representing the rate of change in the child’s height with respect to
the parents’ height,

e ¢: the error term, accounting for random variability.

Galton found that the slope 3, was less than 1, meaning that the children’s heights were
not as extreme as their parents’ heights. For example, if tall parents (above the mean)
had an average child height increase of 3, < 1, it indicated a “regression” toward the

243

population mean. The intercept [, ensured the line passed through the mean of both
parents’ and children’s heights.

Galton, eugenics and racism

Galton is considered one of the founders of modern statistics and is widely recognized
for his contributions to fields such as regression, correlation, and the study of heredity.
However, his work is also deeply intertwined with controversial and now discredited views
on race and eugenics. Galton coined the term eugenics in 1883, defining it as the “science
of improving the genetic quality of the human population”. His goal was to encourage the
reproduction of individuals he deemed “fit” and discourage that of those he considered
“unfit”. He promoted selective breeding among humans, drawing inspiration from animal
breeding practices.

Galton believed in a hierarchy of intelligence and ability among “races”, a belief that
was common among many European intellectuals of his time. In works like Hereditary
Genius (1869), he argued that intelligence and other traits were hereditary and that
Europeans were superior to other racial groups. These conclusions were based on flawed
assumptions and biased interpretations of data. His ideas contributed to the spread of
pseudo-scientific racism, which attempted to justify inequality and colonialism.

Galton’s eugenic ideas were later used to justify discriminatory policies, including forced
sterilization programs and racial segregation in various countries. While Galton himself
did not directly advocate for many of the extreme measures implemented in the 20th
century, his work laid the groundwork for such abuses. His promotion of eugenics and
racial hierarchies has left a damaging legacy.

244

24 Regression models

Area (B

In Chapter 23 you were introduced to regression models. Regression is a statistical model
based on the equation of a straight line, with added error.

y260+,61$+€

By is the regression line’s intercept and (3, is the slope of the line. We have seen that € is
assumed to be from a Gaussian distribution with mean 0 and standard deviation o.

y ~ Gaussian(ju, o)
p= By + b

From now on, we will use the latter way of expressing regression models, because it makes it
clear which distribution we assume the variable y to be generated by (here, a Gaussian distri-
bution). Note that in the wild, variables very rarely are generated by Gaussian distributions.
It is just pedagogically convenient to start with Gaussian regression models (i.e. regression
models with a Gaussian distribution as the distribution of the outcome variable y) because the
parameters of the Gaussian distribution, ;1 and ¢ can be interpreted straightforwardly on the
same scale as the outcome variable y: so for example if y is in centimetres, then the mean and
standard deviation are in centimetres, if y is in Hz, then the mean and SD are in Hz, and so
on. Similarly, the regression 3 coefficients will be on the same scale as the outcome variable y.
You will be introduced later to regression models with distributions other than the Gaussian,
where the regression parameters are estimated on a different scale than that of the outcome
variable y.

The goal of the Gaussian regression model expressed in the formulae above is to estimate [,
B, and o from observed data. Now, since truly Gaussian data is difficult to come by, especially
in linguistics, for the sake of pedagogical simplicity we will start the learning journey on fitting
regression models using vowel durations, i.e. data for which a Gaussian regression is generally
not appropriate. You will learn in Week 8 more appropriate distribution families for this type
of data.

245

24.1 Vowel duration in ltalian: the data

We will analyse the duration of vowels in Italian from Coretta (2019b) and how speech rate
affects vowel duration. Vowel duration should be pretty straightforward, and speech rate is
simply the number of syllables per second, calculated from the frame sentence the vowel was
uttered in. An expectation we might have is that vowels get shorter with increasing speech
rate. You will notice how this is a very vague hypothesis: how shorter do they get? Is the
shortening the same across all speech rates, or does it get weaker with higher speech rates?
Our expectation/hypothesis simply states that vowels get shorter with increasing speech rate.
Maybe we could do better and use what we know from speech production and come up with
something more precise, but this type of vague hypothesis are very common, if not standard,
in linguistic research, so we will stick to it for practical and pedagogical reasons. Remember,
however, that robust research should strive for precision. In short, we will try to answer the
following research question:

What is the relationship between vowel duration and speech rate?

Let’s load the R data file coretta2018a/ita_egg.rda. It contains several phonetic measure-
ments obtained from audio and electroglottographic recordings. You can find the information
on the data in the related entry on the QM Data website: Electroglottographic data on Ital-
ian.

load("data/coretta2018a/ita_egg.rda")

ita_egg

A tibble: 3,268 x 52

speaker ipu stimulus sentence_ons sentence_off word_ons word_off v1_ons

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 it01 ipu_1 Ripete 'po-~ 13.2 14.9 13.7 14.1 13.9
2 it01 ipu_2 Ripete 'to~ 16.9 18.6 17.4 17.9 17.5
3 it01 ipu_3 Ripete 'pa-~ 20.2 21.9 20.7 21.1 20.8
4 it01 ipu_4 Sentivo 't~ 23.5 25.1 24.0 24 .4 24.1
5 it01 ipu_5 Sentivo 't~ 26.3 27.8 26.8 27.2 26.9
6 it01 ipu_6 Scrivete '~ 29.2 30.9 29.7 30.1 29.8
7 it01 ipu_7 Sentivo 'c~ 32.1 33.6 32.6 33.1 32.8
8 it01 ipu_8 Scrivete '~ 35.0 36.6 35.5 35.9 35.6
9 it01 ipu_9 Ha detto '~ 41.9 43.5 42.3 42.7 42.4
10 itO1 ipu_10 Sentivo 'p~ 47.4 48.9 47.9 48.4 48.1

i 3,258 more rows
i 44 more variables: c2_ons <dbl>, v2_ons <dbl>, voice_ons <dbl>,
voice_off <dbl>, cl_rel <dbl>, c2_rel <dbl>, stimulus_id <dbl>,

246

https://uoelel.github.io/qml-data/data/coretta2018a/ita_egg.html
https://uoelel.github.io/qml-data/data/coretta2018a/ita_egg.html

sentence <chr>, word <chr>, cl <chr>, vowel <chr>, c2 <chr>,
backness <chr>, height <fct>, cl_place <fct>, c2_place <fct>,
vl_duration <dbl>, c2_clos_duration <dbl>, rel voff <dbl>,

sent_duration <dbl>, speech_rate <dbl>, speech_rate_c <dbl>,

H H OH ®

Let’s plot vowel duration and speech rate in a scatter plot. The relevant columns in the tibble
are vl_duration and speech_rate. The points in the plot are the individual observations
(measurements) of vowels in the 19 speakers of Italian.

ita_egg |>
ggplot (aes(speech_rate, vl_duration)) +
geom_point(alpha = 0.5) +

labs(
x = "Speech rate (syllables per second)",
y = "Vowel duration (ms)"

)

Warning: Removed 15 rows containing missing values or values outside the scale range
("geom_point() 7).

150 -

100 -

Vowel duration (ms)

50 -

Speech rate (syllables per second)

Figure 24.1: Scatter plot of speech rate (as number of syllables per second) and vowel duration
(in milliseconds) in 19 Italian speakers.

247

You might be wondering what is the warning about missing values. This is because some
observations of vowel duration (v1_duration) in the data are missing (i.e. they are NA, “Not
Available”). We can drop them from the tibble using drop_na(). This function takes column
names as arguments: each row that has NA in any of the columns listed in the function will be
dropped, so be careful when using drop_na() without listing columns because any NA value
in any column with make the row be removed.

ita_egg_clean <- ita_egg |>
drop_na(vl_duration)

We will use ita_egg_clean for the rest of the tutorial. Let’s reproduce the plot, but let’s
add a regression line. This is the straight line we have been talking about, the line that
is reconstructed by regression models. It is sometimes useful to add the regression line to
the scatter plots to show the linear relationship of the two variables in the plot. We can
quickly add regression lines to scatter plots with the smooth geometry: geom_smooth (method
= "Im"). The method argument lets us pick the type of method to create the “smooth”:
here, we want a regression line so we choose 1m for linear model (remember, linear model is
another term for regression model). Under the hood, geom_smooth() fits a regression model
to estimate the regression line and plots it. We will fit our own regression model below, so for
now the regression line is just for show. Figure 24.2 shows the scatter plot with the regression
line. You can ignore the message about the formula.

ita_egg_clean |>
ggplot (aes(speech_rate, vl1_duration)) +
geom_point(alpha = 0.5) +

geom_smooth(method = "lm") +
labs(
x = "Speech rate (syllables per second)",
y = "Vowel duration (ms)"
)
“geom_smooth() ~ using formula = 'y ~ x'

248

150 -

100~

Vowel duration (ms)

50-

Speech rate (syllables per second)

Figure 24.2: Relationship between speech rate (as number of syllables per second) and vowel
duration (in milliseconds) in 19 Italian speakers.

By glancing at the individual points, we can see a negative relationship between speech rate
and vowel duration: vowels get shorter with greater speech rate. This is reflected by the
regression line too, which has a negative slope. A negative slope means that when the values
on the z-axis increase, the values on the y-axis decrease. When the opposite is true, i.e. when
with increasing z-axis values you observe increasing y-axis values, we say the regression line
has positive slope. Positive and negative slope correspond to what some call a direct and
inverse relationship. In terms of the equation of the line y = 3, + 5,2, a positive slope means
B is a positive number and, conversely, a negative slope means 3, is a negative number. When
[, is zero, then the regression line is flat and we say that the two variables are independent:
changing one, does not systematically change the other. You explored these features of the
regression slope in Chapter 23, when playing around with the Regression Models lustrated
app and when answering the quiz.

Direct /positive and inverse/negative relationship

When the slope f3; is positive, the regression line has positive slope and x and y have
a direct relationship.

When the slope f3; is negative, the regression line has negative slope and x and y have
an inverse relationship.

When the slope 3, is 0 zero, the regression line is flat and x and y are independent.

249

https://stefanocoretta.shinyapps.io/lines/

Figure 24.2 looks very nice, but the plot doesn’t tell us much about the estimates for 3, and
5. For that, we need to actually fit the regression model.

24.1.1 The model

Let’s move on onto fitting a Gaussian regression model to vowel duration as the outcome
variable and speech rate as the predictor. We are assuming that vowel duration follows a
Gaussian distribution (although as mentioned at the beginning of this chapter, this is not the
case, but it will do for now). Here is the model we will fit, in mathematical notation.

vdur ~ Gaussian(u, o)

p=PBo+ Py sr
You can read that as:

o Vowel duration (vdur) is distributed (~) according to a Gaussian distribution
(Gaussian(u, 0)).

o The mean pu is equal to the sum of 3, (the intercept) and the product of 5; and speech
rate (3, - sr). The formula of u is regression equation of the model.

The regression model estimates the parameters in the mathematical formulae: the parameters
to be estimated in regression models are usually represented with Greek letters (hence why
we adopted this notation for the linear equation). The regression model in the formulae above
has to estimate the following three parameters:

o The regression coefficients 3, and f3;.

e The standard deviation of the Gaussian distribution, o.

By and B, are called the regression coefficients because they are coefficients of the regression
equation. In maths, a coefficient is simply a constant value that multiplies a “basis” in the
equation, like the variable sr. In the regression equation of the model, £; is a multiplier of
the variable sr, but what about 5,7 Well, it is implied that 3, is a multiplier of the constant
basis 1, because 3, -1 = [5,. Knowing this should now reveal the reason behind the strange
formula that R uses in Gaussian models like the ones we fitted in Chapter 22: the 1 in the
formula stands for the constant basis of the intercept, meaning that the model estimates the
coefficient of the intercept, ,. Gaussian models without predictors are in fact also called
intercept-only regression models, because only an intercept is estimated. There is no slope in
the model because there is not variable x to multiply the slope with.

Going back to our regression model of vowel duration and speech rate, we can rewrite the
model formula to make the constant basis 1 explicit, thus:

250

vdur ~ Gaussian(u, o)
p=Po-1+pPy-sr

To instruct R to model vowel duration as a function of the numeric predictor speech rate
you simply add it to the 1 we have used in the right-hand side of the tilde in Chapter 22
(i.e. vl_duration ~ 1): so vl_duration ~ 1 + speech_rate. The R formula is based on
the bases you multiply the coefficients with in the mathematical formula: 1 and sr. In R
parlance, the 1 and sr in the R formula are called predictor terms, or terms for short. While
the predictor sr can take different values, the 1 is constant so it is also called the constant
term, or the intercept term (because it is the basis of the intercept ;). In the R formula,
you don’t explicitly include the coefficients 3, and f;, just the bases. Put all this together
and you get the 1 + speech_rate part of the formula. There is more: in R, since the 1 is
a constant, you can omit it! So vl_duration ~ 1 + speech_rate can also be written as
vl_duration ~ speech_rate. They are equivalent.

That was probably a lot! But now that we have clarified how the R formula is set up, we can
proceed and fit the model. Here is the full code to fit a Gaussian regression model of vowel
duration with brms.

library(brms)

vow_bm <- brm(
"1 +° can be omitted.
vl_duration ~ 1 + speech_rate,
vl_duration ~ speech rate,
family = gaussian,
data = ita_egg_clean

R Note: The rethinking package

McElreath’s textbook Statistical Rethinking (McElreath 2020) comes with an R package,
rethinking, that lets you fit data using R formulae that resemble the mathematical for-
mulae more closely. For example, in rethinking the model formula of our model of vowel
duration would look like the code below. The package requires you to include all the
formulae in a list. Note that the rethinking package does not set default priors, so we
have included them below.

251

https://github.com/rmcelreath/rethinking

alist(
vl_duration ~ dnorm(mu, sigma),
mu <- b0 + b2 * speech_rate,
Priors
a ~ dt(80, 25),
b ~ dt(o, 1),
sigma ~ dt(0, 25)

If you look closely at the the first two lines in the list, you should recognise the mathe-
matical formulae of the model we have seen above.

24.2 Interpret the model summary

As we has seen in Chapter 22, to obtain a summary of the model, we use the summary ()
function.

summary (vow_bm)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: vl_duration ~ speech_rate
Data: ita_egg_clean (Number of observations: 3253)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-95J% CI u-95% CI Rhat Bulk_ESS Tail_ ESS
Intercept 198.47 3.33 191.76 204.97 1.00 3681 2274
speech_rate -21.73 0.62 -22.93 -20.49 1.00 3623 2421

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sigma 21.66 0.27 21.14 22.19 1.00 3855 2615

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

252

Let’s focus on the Regression Coefficients table of the summary. It should now be clear
why in the summary of the model in Chapter 22, the summaries for the mean p (i.e. ;)
were in the regression coefficients table. The table of the regression model we just fit has two
coefficients. To understand what they are, just remember the equation of the line and the
model formula above, repeated here.

vdur ~ Gaussian(u, o)
w=PBy-14+p;-sr
o Intercept is f,: this is the mean vowel duration, when speech rate is 0.

o speech_rate is f;: this is the change in vowel duration for each unit increase of
speech rate.

This should make sense, if you understand the equation of a line: y = 3, + ;2. Remember,
the intercept [, is the y value when z is 0. In our regression model, y is vowel duration vdur
and x is speech rate sr. So the Intercept is the mean vowel duration when speech rate is
0. Recall that the Estimate and Est.Error column are simply the mean and standard
deviation of the posterior probability distributions of the estimate of Intercept and
speech_rate respectively. In this model we just have two coefficients instead of one. Looking
at the 95% Credible Intervals (Crls), we can say that based on the model and data:

e The mean vowel duration, when speech rate is 0 syl/s, is between 192 and 205 ms, at
95% confidence.

o We can be 95% confident that, for each unit increase of speech rate (i.e. for each increase
of one syllable per second), the duration of the vowel decreases by 20.5-23 ms.

To answer our research question (what is the relationship between vowel duration and speech
rate?) we can say that with increasing speech rate, vowel duration decreases. We can be more
precise than that and say that for each increase of one syllable per second, the vowel becomes
20.5 to 23 ms shorter, at 95% confidence (that is our 95% CrI). Since this is a regression model,
it doesn’t matter if we are comparing vdur when sr = 0 vs when sr = 1, or when sr = 6.5 vs
when sr = 7.5. The slope coefficient 3; tells us what to add to vdur when you increase sr by
one. For example, assume you want to obtain from the model an estimate of mean vdur when
speech rate is 5. You would just plug in sr =5 in the formula:

p=_00+p5 -5

So that is the intercept [, plus [; times the speech rate, i.e. 5. The only complication is
that here 3, and (3, are full probability distributions, rather than single values like you would
have in the simple case of the equation of a line. Since the coefficients are posterior probability
distributions, any operation like addition and multiplication will lead to a posterior probability

253

distribution, i.e. the posterior probability distribution of p. You will learn how do to these
operations in the next chapter, Chapter 25.

For now, let’s focus on the posterior distributions of the coefficients. To see what the posterior
probability densities of 3, 8, and o look like, you can quickly plot them with the plot()
function, as we did in Chapter 22. There is also another way: we can use the mcmc_dens ()
function from the bayesplot package (why it’s memc_dens () will become clear in Chapter 25).
By default the function plots the posterior densities of all parameters in the model, plus other
internal parameters that we usually don’t care about. We can conveniently specify which
parameters to plot with the pars argument, which takes a character vector. The names
of the parameters for the regression coefficients are slightly different than what you see in
the summary: b_Intercept and b_speech_rate. These are just the names you see in the
summary, with a prefixed b_. The b_ stands for beta coefficient, which makes sense, since these
are the 3, and (3, coeflicients. Figure 24.3 shows the output of the mcmc_dens () function.

library(bayesplot)

mcmc_dens (vow_bm, pars = c("b_Intercept", "b_speech_rate", "sigma"))

b_Intercept b_speech_rate sigma

190 195 200 205 210 -24 -23 -22 -21 -20 21.0 215 220 22°t

Figure 24.3: Posterior density plots of a regression model fitted to vowel duration.

These are the results of the regression model: the full posterior probability distributions of
the three parameters 3, 8;, 0. The posteriors can be described, as with any other probability
distribution, by the values of their parameters. It is common to use the mean and standard
deviation, the parameters of the Gaussian distribution. This is independent from the fact that
we fitted a Gaussian distribution: posterior distributions tend to be bell-shaped, i.e. Gaus-
sian. This is why the Regression Coefficients table of the summary reports mean and SD,
i.e. Estimate and Est.Err, as mentioned earlier.

You should always also plot the model predictions, i.e. the predicted values of vowel duration
based on the model predictors (here just speech_rate). You will learn more advanced methods
later on, but for now you can use conditional_effects() from the brms package.

254

https://mc-stan.org/bayesplot/

conditional_effects(vow_bm, effects = "speech_rate")

100 -

~
(6)]
1

vl duration

50-

25-

4 5 6 7
speech_rate

Figure 24.4: Posterior predictions of vowel duration based on speech rate from a regression
model.

If you wish to include the raw data in the plot, you can wrap conditional_effects() in
plot () and specify points = TRUE. Any argument that needs to be passed to geom_point ()
(these are all ggplot2 plots!) can be specified in a list as the argument point_args. Here we
are making the points transparent.

plot(
conditional_effects(vow_bm, effects = "speech_rate"),
points = TRUE,
point_args = list(alpha = 0.1)

)

255

150 -

vl duration
[y
o
o
1

50-

speech_rate

Figure 24.5: Posterior predictions of vowel duration based on speech rate from a regression
model (repr.).

This plot looks basically the same as Figure 24.2. Indeed, in Figure 24.2 we used
geom_smooth() to add a regression line from a regression model. A warning told us that
this formula was used: y ~ x. In the context of that plot, that means the smooth function
fitted a regression model with speech rate as x and vowel duration as y. This is because the
aesthetics are exactly aes(x = speech_rate, y = vi_duration) (we didn’t write the x =
and y = because they are implied). So geom_smooth() has fitted exactly the same model
we have fitted with brms. It might look trivial to fit a full model when you can just look at
the regression line of geom_smooth(). This is not the case for two reasons: first, you just
see a regression line, but you don’t know what the posterior distributions of the parameters
are; second, with more complex scenarios, geom_smooth() falls short and can only produce
regression lines based on very simple formulae like y ~ x.!

!Technically, geom_smooth() uses 1m() under the hood. This is a base R function that fits regression models
using maximum likelihood estimation (MLE). This way of estimating regression coefficients is common in
frequentist approaches to regression modelling and we will not treat it here. If you are interested about 1m()
and MLE, you can learn about these in Winter (2020).

256

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

24.3 Reporting

You have seen an example of reporting in Chapter 22. We can use that as a template for
reporting a regression model, by reworking a few parts and adding information related to the
numeric predictor in the regression. You could report the vowel duration regression model like
S0:

We fitted a Bayesian regression model using the brms package (Biirkner 2017) in
R (R Core Team 2025). We used a Gaussian distribution for the outcome variable,
vowel duration (in milliseconds). We included speech rate (measured as syllables
per second) as the regression predictor.

Based on the model results, there is a 95% probability that the mean vowel duration,
when speech rate is 0, is between 192 and 205 ms (mean = 198, SD = 3). For each
unit increase of speech rate (i.e. for each one syllable per second added), vowel
duration decreases by 20 to 23 ms (mean = -22, SD = 1). The residual standard
deviation is between 21 and 22 ms (mean = 22, SD = 0).

Note the wording of the speech rate coefficient: “vowel duration decreases by 20 to 23 ms”. The
speech rate coefficient 95% Crl is fully negative (i.e. both lower and upper limit are negative)
so we can say that vowel duration decreases. Furthermore, since we say “decreases” then we
should report the Crl limits as positive numbers. Think about it: we say “decrease X by 27”
to mean “X - 2”7, rather than “decrease X by -2”. Finally, given we flipped the signs of the Crl
limits, it is clearer to write “20 to 23 ms”, rather than the other way round as you would if
you reported the interval as is: 95% Crl [-23, -20].

Another point to note is that in the reporting style I am using in this book, we place more
emphasis on the posterior Crl than on the posterior mean and SD. So the Crl is in the main
text, while mean and SD are between parentheses. Other researchers might in fact do it the
other way round. Whatever you decide to do, be consistent. Finally, it is unusual to report
the coefficients of o: I have done it here for completeness, since it doesn’t hurt to do so.

24.4 \What’s next

In this chapter you have learned the very basics of Bayesian regression models. As mentioned
above, regression models with brms are very flexible and you can easily fit very complex models
with a variety of distribution families (for a list of available families, see ?brmsfamily; you
can even define your own distributions!). The perk of using brms is that you can just learn
the basics of one package and one approach and use it to fit a large variety of regression
models. This is different from the standard frequentist approach, where different models
require different packages or functions, with their different syntax and quirks. In the following
weeks, you will build your understanding of Bayesian regression models, which will enable

257

you to approach even the most complex models! However, due to time limits you won’t
learn everything there is to learn in this course. Developing conceptual and practical skills
in quantitative methods is a long-term process and unfortunately one semester will not be
enough. So be prepared to continue your learning journey for years to come!

24.5 Summary

o (Gaussian regression models have the following mathematical form:

y ~ Gaussian(u, o)
w= B+ b

o A regression model estimates an intercept S, and a slope ; from the data (z and
Y)-

o Regression models in brms are fit with the R formulay ~ 1 + x. We can omit the
constant/intercept term: y ~ x.

o The intercept 3, is the mean y when x is 0 zero.

o The slope 3, is the change in y for every unit increase of x.

258

25 Wrangling MCMC draws

Area Statistics .i;

25.1 MCMC what?

Bayesian regression models fitted with brms/Stan use the Markov Chain Monte Carlo (MCMC)
sampling algorithm to estimate the probability distributions of the model’s parameters. You
have first encountered MCMC in Chapter 22: the text printed when running brm() is about
the MCMC. Bayesian models reconstruct the posterior probability distribution of a set of
parameters. More precisely, they reconstruct (i.e. estimate) the joint probability distribution
of the parameters. In other words, all parameters are estimated at the same time: think of
this as a multidimensional space of probability, with one dimension per parameter. With two
parameters, like intercept and slope, this is a 3-dimensional space, something we can imagine:
think of a landscape with hills and valleys, where the z-axis are values for the intercept, the -
axis are values for the slope and the z-axis (the vertical axis) are probability densities. The hills
represent high probability areas and valleys represent low probability areas. This landscape
of hills and valleys is determined by the two components of the Bayes’ Theorem: the prior
probability distribution P(h) and the probability of the data given the prior, P(d|h).

Constructing the landscape from the prior and data analytically (i.e. solving the mathematical
equation of Bayes’ Theorem) is very often very hard or even impossible. The MCMC algorithm
allows us to sample points in the landscape without actually mathematically reconstruct the
landscape. In the Stan software, which brms uses to fit Bayesian models, the MCMC algorithm
uses a specific implementation called Hamiltonian Monte Carlo (HMC). The HMC version of
MCMC simulates physical particles rolling through the posterior landscape, using equations
from physical mechanics. At each iteration, the algorithm “flicks” a particle (like a pinball
ball) and then stops it in its tracks: the place on the posterior landscape where the particle
stops is taken as a “draw”. In the 3-dimensional landscape of intercept and slope, the intercept
and slope values corresponding to the spot the particle was stopped are recorded. So the draw
from one iteration holds one value for the intercept and one for the slope. The algorithm
proceeds for several iterations, thus creating a list of draws. These draws can be used to plot
and summarise the posterior distributions of the parameters. The draws are called posterior
draws, because they come from the posterior probability distribution.

259

This is a bit abstract and if you want to learn more about MCMC, I recommend McElreath
(2020), Ch 9 and Nicenboim, Schad, and Vasishth (2025), Ch 3. Note that to be a proficient user
of brms and Bayesian regression models, you don’t need to fully understand the mathematics
behind MCMC algorithms, as long as you understand them conceptually.

When you run a model with brms, the draws (i.e. the sampled values) are stored in the model
object. All operations on a model, like obtaining the summary(), are actually operations
on those draws. We normally fit regression models with four MCMC chains. The sampling
algorithm within each chain runs for 2000 iterations by default. The first half (1000 iterations)
are used to “warm up” the algorithm (i.e. tune certain parameters related to the mechanics
equations that make the particles move) while the second half (1000 iterations) are the ones
included in the actual posterior draws. Since four chains run with 2000 iterations of which 1000
are kept as posterior draws, we end up with 4000 draws we can use to learn details about the
posterior. The rest of this chapter will teach you how to extract and manipulate the model’s
draws. We will do so by revisiting the model fitted in Chapter 24.

25.2 Reproducible model fit

Before we move to the model, it is worth making a couple practical considerations. Fitting
simple models with brms is relatively quick. However, more complex model using larger
data sets can take some time for the MCMC to efficiently sample the posterior distribution
(sometimes even hours!). It is useful to save the model fit to a file so that, once the model
is fit once, you don’t have to fit it again. This can be done by specifying a file path in the
file argument in the brm() function. I suggest developing the habit of having a dedicated
cache/ in your Quarto project to save all of the brms model objects in. Go ahead and create
a cache/ folder in you project. Then, in your week-05.qgmd document, rewrite the model from
the previous chapter like so:

vow_bm <- brm(
1 +° can be omitted.
vl_duration ~ speech_rate,
family = gaussian,
data = ita_egg clean,
cores = 4,
20912,
"cache/vow_bm"

seed
file

The file argument tells brms to save the model output to the cache/ folder in a file called
vow_bm.rds. The extension .rds is appended automatically (this is the same file type you
encountered where reading data, like glot_status.rds). What about cores and seed? When

260

the model is fit, four MCMC chains are run. By default, these are run sequentially: the first
chain, then the second, then the third and finally the fourth. But we can speed things up a bit
by running them in parallel on separate computer cores. Virtually all computers today have
at least four cores, so we can run the four chains using four cores. This is what cores = 4
does: it tells brms to run each chain on one core so they are run in parallel. Since the MCMC
algorithm contains a random component (physical particles are randomly flicked across the
landscape), every time you refit the model, a different set of draws are drawn (because the
particles stop at random places in the landscape). One way to make the model reproducible
(meaning, obtaining exactly the same draws every time) is to set a “seed”. In computing, a
seed is a number used for random number generation: when set, the same list of “random”
numbers is produced. The MCMC algorithm uses random number generation to run itself, so
by setting the seed we are in fact “fixing” the randomness of the algorithm. The seed number
can be any number: here I set it to 20912.

Now run the model. The model will be fitted and the model object will be saved in cache/
with the file name vow_bm.rds. If you now re-run the same code again, you will notice that
brm() does not fit the model again, but rather reads it from the file (no output is shown, but
trust me, it works!). This saves time: you fit the model once but you can read the output
multiple times. This is also good for reproducibility: an independent researcher with access to
your code and the cache folder can run your code and get exactly the same results as yours.

Important

When you save the model fit to a file, R does not keep track of changes in the model
specification (like changes in formula or data and so on), so if you make changes to model,
you need to delete the saved model file before re-running the code for the changes to
have effect!

25.3 Extract MCMC posterior draws

There are different ways to extract the MCMC posterior draws from a fitted model. In this
book, we will use the as_draws_df () function from the posterior package. The function
extracts the draws from a Bayesian regression model and outputs them as a data frame. Before
we extract the draws from the vow_bm model, let’s revisit the summary.

summary (vow_bm)
Family: gaussian
Links: mu = identity; sigma = identity

Formula: vl_duration ~ speech_rate
Data: ita_egg_clean (Number of observations: 3253)

261

https://mc-stan.org/posterior/

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 198.47 3.33 191.76 204.97 1.00 3681 2274
speech_rate -21.73 0.62 -22.93 -20.49 1.00 3623 2421

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail ESS
sigma 21.66 0.27 21.14 22.19 1.00 3855 2615

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The Draws information in the summary are exactly that: information on the MCMC draws
of the model. It says 4 chains were run each with 2000 iterations of which 1000 used for
warm-up. thin = 1 just tells brms to keep all the post-warm up draws, and it’s fine as is
so you can just ignore it. Then the summary tells us that there are 4000 total post-warm-up
draws. We are good to go! We can extract the MCMC draws from the model using the
as_draws_df () function. This function returns a data frame (more specifically a tidyverse
tibble with class draws_df) with values from each draw of the MCMC algorithm. Since there
are 4000 post-warm-up draws, the tibble has 4000 rows.

vow_bm_draws <- as_draws_df (vow_bm)
vow_bm_draws

A draws_df: 1000 iterations, 4 chains, and 6 variables
b_Intercept b_speech_rate sigma Intercept lprior 1p__

1 206 -23 22 83 -8.3 -14627
2 191 -20 22 82 -8.3 -14627
3 204 -23 22 83 -8.3 -14626
4 201 =22 21 83 -8.3 -14626
5 194 -21 22 83 -8.3 -14627
6 202 -23 22 82 -8.3 -14627
7 197 -21 22 83 -8.3 -14625
8 200 -22 22 82 -8.3 -14625
9 195 -21 22 83 -8.3 -14625
10 199 -22 22 83 -8.3 -14625
. with 3990 more draws

... hidden reserved variables {'.chain', '.iteration', '.draw'}

262

Ignore the Intercept, lprior and 1p__ columns, they are for internal safekeeping. Open the
data frame in the RStudio viewer. You will see three extra column: .chain, .iteration and
.draw (which are mentioned in the message printed with the tibble). They indicate:

o .chain: The MCMC chain number (1 to 4).
e .iteration: The iteration number within chain (1 to 1000).
o .draw: The draw number across all chains (1 to 4000).

Make sure that you understand these columns in light of the MCMC algorithm. The fol-
lowing columns contain the drawn values at each draw for three parameters of the model:
b_Intercept, b_speech_rate and sigma. To remind yourself what these mean, let’s have a
look at the mathematical formula of the model.

vdur ~ Gaussian(u, o)
p=Po+ By sr

So:

e b_Intercept is ;. This is the mean vowel duration when speech rate is zero.

e b_speech_rate is ;. This is the change in vowel duration for each unit increase of
speech rate.

o sigma is 0. This is the overall standard deviation of vowel duration (the standard
deviation of the residual error).

Any inference made on the basis of the model are inferences derived from the draws. One
could say that the model “results” are, to put it simply, these draws and that the draws can
be used to make inferences about the population one is investigating.

25.4 Summary measures of the posterior draws

The Regression Coefficients table from the summary () of the model reports summary mea-
sures calculated from the drawn values of b_Intercept and b_speech_rate. These summary
measures are the mean (Estimate), the standard deviation (Est.error) of the draws and
the lower and upper limits of the 95% Credible Interval (Crl). We can obtain those same
measures ourselves from the data frame with the draws. Let’s calculate the mean and SD of
b_Intercept and b_speech_rate (we round to the second digit with round(2)).

Intercept
mean (vow_bm_draws$b_Intercept) |> round(2)

[1] 198.47

263

sd(vow_bm_draws$b_Intercept) |> round(2)

[1] 3.33

Speech rate
mean (vow_bm_draws$b_speech_rate) |> round(2)

[1] -21.73

sd(vow_bm_draws$b_speech_rate) |> round(2)

[1] 0.62

Compare the values obtained now with the values in the model summary above. They are the
same, because the summary measures in the model summary are simply summary measures
of the draws. What if we want to calculate the Credible Intervals (Crls)? In Chapter 19, you
learned about the quantile function (the inverse CDF) to calculate intervals from theoretical
distributions. However, here we need to calculate intervals from a sample of posterior draws:
the MCMC draws. Note that central probability intervals of posterior draws are called Credible
Intervals in Bayesian statistics, so Crl is just a specific type of interval. To obtain intervals
from samples we can use the quantile2() function from the posterior package. This function
takes two arguments: x, a vector of values to calculate the interval of, and probs, a vector of
probabilities, like qnorm(). By default, probs = ¢(0.05, 0.95). This gives you a 90% Crl
interval, but the model summary returns by default a 95% Crl. For a 95% Crl, we need the
2.5th percentile and the 97.5th percentile: ¢(0.025, 0.975). Here’s the code:

library(posterior)

Intercept
quantile2(vow_bm_draws$b_Intercept, c(0.025, 0.975)) [|> round(2)

q2.5 q97.5
191.76 204.97

Speech rate
quantile2(vow_bm_draws$b_speech_rate, c(0.025, 0.975)) [|> round(2)

q2.5 q97.5
-22.93 -20.49

264

Compare these values with the ones in summary: again they are the same. Remember: a 95%
Crl tells us that there is a 95% probability, given the model and data, that the value of the
parameters is between the lower and upper limit of the interval. So a 90% CrI tells us that
there is an 90% probability that the value is between the lower and upper limit, a 60% interval
that there is a 60% probability and so on. We can also say that we are 95% confident that the
value lies between the limits. Intervals at lower level of probability are narrower (they span a
smaller range of values) than intervals at higher level of probability: so a 95% CrlI is always
wider than an 80% Crl, which is wider than a 60% CrI and so on. A narrower Crl means more
precision: we have a more precise expectation of which range the parameter lies in. But with
more precision comes more uncertainty: a 60% Crl is more precise than a 95% Crl because
it is narrower, but it is also more uncertain because we go from a 95% probability to a 60%
probability. This is the precision/confidence trade-off that we have to live with when doing
research. Vasishth and Gelman (2021) say (in the context of frequentist statistics): “[we have
to learn] to accept the fact that—in almost all practical data analysis situations—we can only
draw uncertain conclusions from data.”

Exercise 1

Calculate the 90%, 80% and 60% Crls of b_Intecept and b_speech_rate.

With this model, vow_bm, getting all of these Crls might look trivial: the 95% Crls are quite
narrow, giving us quite a precise range of values for both the intercept and the coefficient of
speech rate. This is because there is quite a lot of data and the model is quite simple, there
is only one predictor. With more complex model and smaller data sets, uncertainty is greater
and the intervals will span a large range of values. We will see examples later in the book.
In those cases, it is helpful to be able to discuss Crls at different levels of probability, since a
lower-probability Crl might tells us something clearer about what we are investigating, while
warning us of the increased uncertainty that comes with it.

In the previous chapter, we mentioned that one can calculate the posterior probability of mean
vowel duration vdur based on a specific value of speech rate sr, using the model. We also noted
that since we are working with MCMC it is not just like plugging in numbers according to
the model’s equation, but rather we need to use the entire probability distributions. In fact,
we can use the MCMC draws and plug them in directly, as you would with a single number.
However, with MCMC draws the operations in the equation are applied draw-wise. Let’s see
what this means by means of code:

vow_bm_draws <- vow_bm_draws |>
mutate (
vdur_srb5 = b_Intercept + b_speech_rate * 5
)

head(vow_bm_draws$vdur srb)

[1] 90.46033 89.10209 90.58991 90.38785 90.02444 89.54223

265

The mutate code vdur_sr5 = b_Intercept + b_speech_rate * 5is based on = ;4 3;sr.
In the code, sr is set to 5 (syllables per second). So the mean vowel duration when speech
rate is 5 syl/s is the intercept 5, plus the slope (; times 5. Since we are mutating a data
frame where each row is one of the 4000 total draws, we are summing and multiplying the
values within each row. This gives us a new column vdur_sr5 with 4000 predicted values of
vowel duration, one per draw. You can then get summary measures, Crls and even plot the
values of the predicted column, like you would with the coefficients columns. The following
code calculates the 95% Crl of the predicted vowel duration when speech rate is 5 syl/s (note
we took 5 syl/s just as an example, but you can get prediction for any value of speech rate).

quantile2(vow_bm_draws$vdur_sr5, c(0.025, 0.975)) [> round()

92.5 q97.5
89 91

Based on the model and data, when speech rate is 5 syl/s, the predicted vowel duration is
80-91 ms, at 95% probability.

25.5 Plotting posterior draws

Plotting posterior draws is as straightforward as plotting any data. You already have all of the
tools to understand plotting draws with ggplot2. To plot the reconstructed posterior probabil-
ity distribution of any parameter, we plot the probability density (with geom_density()) of
the draws of that parameter. Let’s plot b_speech_rate. This will be the posterior probability
density of the change in vowel duration for each increase of one syllable per second. Figure 25.1
shows the posterior probability density of b_speech_rate. If you compare this plot with the
central panel of Figure 24.3, the density curves are identical.

vow_bm_draws |>
ggplot(aes(b_speech_rate)) +
geom_density() +
geom_rug(alpha = 0.2)

266

0.6

0.4

density

0.2

0.0 |0 e

-24 -23 -22 -21 -20 -19
b_speech_rate

Figure 25.1: Posterior probability distribution of b_speech_rate.

The ggdist package has some convenience ggplot geometries and stats for plotting posterior
densities with Crls. The stat_halfeye() can shade the area under the curve depending on the
specified interval levels, like in the code for Figure 25.2 below, which shows 50%, 80% and 95%
Crls. Below the density curve there are error bars of increasing thickness, each corresponding
to a Crl. The large dot represents the median of the draws (rather than the mean, like in the
model summary). The median is another acceptable summary measure for posteriors.

library(ggdist)

vow_bm_draws |>
ggplot(aes(x = b_speech_rate)) +
stat_halfeye(
.width = ¢(0.5, 0.8, 0.95),
aes(fill = after_stat(level))
) +
scale fill brewer(na.translate = FALSE) +
geom_rug(alpha = 0.2)

267

https://mjskay.github.io/ggdist/index.html

1.00

0.75
level
0.95
> 0.50
0.8
B os
0.25
0.00 T i 1]
-24 -23 -22 -21 -20 -19

b_speech_rate

Figure 25.2: Posterior probability distribution of b_speech_rate with credible intervals.

The aes(£fill = after_stat(level)) requires a bit of explanation. We are using aes() be-
cause we are mapping the fill of the shaded areas to some data, i.e. the level of the Crls:
0.5, 0.8, 0.95. These are specified in the .width argument. The Crl are calculated by
stat_halfeye() from the supplied vow_bm_draws, and the function creates, under the hood,
a data frame with the interval limits and a column level which specifies the interval level. So
after_stat(level) is simply telling ggplot to use the level column for the fill from the data
frame that is available after the stat (the halfeye) has been computed (if you want to know
more, you can check the aes eval documentation from ggplot2). You can learn more about
gedist visualisation tools on the ggdist website.

Exercise 2

Plot the half-eyes of b_Intercept and sigma.

268

https://ggplot2.tidyverse.org/reference/aes_eval.html
https://mjskay.github.io/ggdist/index.html

Part VI

Week 6

269

26 Interim summary

Week 6 of the QML course is “catch-up” week. There are no classes and no new contents are
introduced, for you to be able to catch up with things if you need to and/or revise the contents
of Week 1 to 5.

If you look back at what you knew when starting in Week 1 and what you have learned
up until now, especially if you were a beginner, you should me very proud of yourself! We
have covered a lot of concepts and skills in a very short period of time. You have learned
about research methods, research questions and research hypotheses, the perils of the research
cycle and questionable research practices, Bayesian inference, the basics of R, how to read,
summarise and plot data, and how to fit and interpret simple Gaussian models, including
regression models like y ~ x.

The contents of Week 1 to 5 are really the bare minimum one needs to know to be able to
work towards being proficient in quantitative methods, but the road to proficiency is a long
one. Week 7 to 10 continue the learning journey of regression models and it will provide you
with background knowledge in frequentist inference, another approach to statistical inference.
We will scratch the surface of regression modelling, and to really become functional you will
need to learn beyond this course. There is so much we can fit in a one-semester course and
to be able to get to a point where you can confidently navigate all there is to quantitative
methods will take years. This is no different from studying linguistics: you don’t just do one
semester-long course in linguistics and then you can write a full dissertation.

Hopefully you enjoyed the learning process so far and you look forward for the second part!

270

Part VII

Week 7

271

27 Regression with categorical predictors

Area Statistice m;

In Chapter 24 you learned how to fit regression models of the following form in R using the
brms package.

y ~ Gaussian(u, o)
p= Lo+

In these models, x was a numeric predictor, like speech rate in the chapter’s example. Numeric
predictors are not the only type of predictors that a regression model can handle. Regression
predictors can also be categorical variables: gender, age group, place of articulation, mono- vs
bi-lingual, etc. However, regression model cannot handle categorical predictors directly: think
about it, what would it mean to multiply 3, by “female” or by “old”? Categorical predictors
have to be re-coded as numbers.

In this chapter we will revisit the MALD reaction times (RTs) data from Chapter 22, this time
with the following research question:

Is the RTs in a auditory lexical decision task affected by the type of the target
word (real or not)?

This chapter will teach you the default way of including categorical predictors in regression
models: numerical coding with treatment contrasts. This is the most common way to code
categorical predictors.

27.1 Reuvisiting reaction times

Let’s read the MALD data (Tucker et al. 2019). The data contains reaction times from an
auditory lexical decision task with English listener: the participants would hear a word (real
or not) and would have to press a button to say if the word was a real English word or not.

mald <- readRDS("data/tucker2019/mald_1_1.rds")
mald

272

A tibble: 5,000 x 7

Subject Item IsWord PhonLev RT ACC RT_log

<chr> <chr> <fct> <dbl> <int> <fct> <dbl>
1 15308 acreage TRUE 6.01 617 correct 6.42
2 15308 maxraezaxr FALSE 6.78 1198 correct 7.09
3 16308 prognosis TRUE 8.14 954 correct 6.86
4 15308 giggles TRUE 6.22 579 correct 6.36
5 16308 baazh FALSE 6.13 1011 correct 6.92
6 15308 unflagging TRUE 7.66 1402 correct 7.25
7 15308 ihnpaykaxrz FALSE 7.47 1059 correct 6.97
8 15308 hawk TRUE 6.09 739 correct 6.61
9 15308 assessing TRUE 6.37 789 correct 6.67
10 15308 mehlaxl FALSE 5.80 926 correct 6.83

i 4,990 more rows

The relevant columns are RT with the RTs in milliseconds and IsWord, the type of target word:
it tells if the target word the listeners heard is a real English word (TRUE) or not (a nonce word
FALSE). Figure 27.1 shows the density plot of RTs, grouped by whether the target word is real
or not. We can notice that the distribution of RTs with nonce (non-real) words is somewhat
shifted towards higher RTs, indicating that more time is needed to process nonce words than
real words.

mald |[>
ggplot (aes(RT, fill = IsWord)) +
geom_density(alpha = 0.8) +
geom_rug(alpha = 0.1) +
scale_fill brewer(palette = "Dark2")

273

0.0020

0.0015
> Isword
&2 TRUE
© 0.0010
© FALSE

0.0005

0.0000 | SN

0 1000 2000 3000
RT

Figure 27.1: Density plot of reaction times from the MALD data (Tucker et al. 2019).

You might also notice that the “tails” of the distributions (the left and right sides) are not
symmetric: the right tail is heavier that the left tail. This is a very common characteristics of
RT values and of any variable that can only be positive (like vowel duration or the duration of
any other phonetic unit). These variables are “bounded” to only positive numbers. You will
learn later on that the values in these variables are generated by a log-normal distribution (
Chapter 31), rather than by a Gaussian distribution (which is “unbounded”). For the time
being though, we will model the data as if they were generated by a Gaussian distribution, so
that we can focus on the categorical predictor part.

Another way to present a numeric variable like RTs depending on categorical variables is to
use a jitter plot, like Figure 27.2. A jitter plot places dots corresponding to the values in the
data on “strips”. The strips are created by randomly jittering dots horizontally, so that they
don’t all fall on a straight line. The width of the strips, aka the jitter, can be adjusted with the
width argument. It’s subtle, but you can see how in the range 1 to 2 seconds there are a bit
more dots in nonce words (right, orange) than in real words (left, green). In other words, the
density of dots in that range is greater in nonce words than real words. If you compare again
the densities in Figure 27.1 above, you will notice that the orange density in the 1-2 seconds
range is higher in nonce words. These are just two ways of visualising the same thing.

mald |>

ggplot (aes(IsWord, RT, colour = IsWord)) +
width controls the width of the strip with jittered points

274

geom_jitter(alpha = 0.15, width = 0.1) +

scale_colour_brewer(palette = "Dark2")
3000
2000 , k
Isword
|_
e TRUE
FALSE
1000
0
TRUE FALSE
IsWord

Figure 27.2: Jitter plot of reactions times for real and nonce words.

We can even overlay density plots on jitter plots using “violins”, like in Figure 27.3. The
violins are simply mirrored density plots, placed vertically on top of the jittered strips. The
width of the violins can be adjusted with the width argument, like with the jitter.

mald |>
ggplot(aes(IsWord, RT, fill = IsWord)) +
geom_jitter(alpha = 0.15, width = 0.1) +
geom_violin(width = 0.2) +
scale_fill brewer(palette = "Dark2")

275

3000

2000
IsWord
|_

- TRUE
FALSE

1000

0

TRUE FALSE
IsWord

Figure 27.3: Jitter and violin plot of reactions times for real and nonce words.

Jitter and violin plots

Data that combines one numeric and one or more categorical variables can be
represented with jitter and violin plots.

A jitter plot shows the numeric data in a strip of jittered points (one point per observa-
tion in the data). A violin is a mirrored density curve.

It is good practice to show the raw data and the density using violin and jitter plots, because,
so this should be your go-to choice for plotting numeric data by categorical groups, like RTs and
type of word here. Now we can obtain a few summary measures. The following code groups the
data by IsWord and then calculates the mean, median and standard deviation of RTs. After
summarise (), we are using a trick to round all columns that are numeric, namely the columns
with the mean, median and SD. The trick is to use the across() function in combination
of where(). across(where(is.numeric), round) means “across columns where the type is
numeric, round the value”.

mald_summ <- mald |[>
group_by(IsWord) |>
summarise (
mean (RT), median(RT), sd(RT)
) >

mutate (

276

round all numeric columns
across(where(is.numeric), round)

)

mald_summ

A tibble: 2 x 4
IsWord “mean(RT) ~ “median(RT)~ “sd(RT)"

<fct> <dbl> <dbl> <dbl>
1 TRUE 953 888 291
2 FALSE 1069 994 333

The mean and median RTs for nonce words (IsWord = FALSE) are about 100 ms higher than
the mean and median of real words. We could stop here and call it a day, but we would make
the mistake of not considering uncertainty and variability: this is just one (admittedly large)
sample of all the RT values that could be produced by the entire English-speaking population.
So we should apply inference from the sample to the population to obtain an estimate of the
difference in RTs that accounts for that uncertainty and variability. We can use regression
models to do that. The next sections will teach you how to model the RTs with regression
models in brms.

R Note: Tables with kable()

With Quarto, you can output the summaries as a table, using knitr: :kable(). You can
learn more about this here.

knitr: :kable(
mald_summ,
digits = O,
col.names = c("Is word?", "mean", "median", "SD")

Table 27.1: Mean, median and standard deviation of RTs for real and nonce words.

Is word? mean median SD

TRUE 953 888 291
FALSE 1069 994 333

277

https://quarto.org/docs/authoring/tables.html#computations

27.2 Treatment contrasts

We can model RTs with a Gaussian distribution (although as mentioned above, this family of
distribution is generally not appropriate for variables liker RTs) with a mean p and a standard
deviation o: RT ~ Gaussian(u, o). This time though we want to model a different mean p
depending on the word type in IsWord. How do we make the model estimate a different mean
depending on IsWord? There are several ways of setting this up. The default method is to
use so-called treatment contrasts which involves numerical coding of categorical predictors
(the coding takes the same naming as the contrasts, so the coding for treatment contrasts is
treatment coding). Let’s work by example with IsWord. This is a categorical predictor with
two levels: TRUE and FALSE. With treatment contrasts, one level is chosen as the reference
level and the other is compared to the reference level. The reference level is automatically set
as the first level in the predictor in alphabetical order. This would mean that FALSE would be
the reference level, because “F” comes before “T”.

However, in the mald data, the column IsWord is a factor column and the levels have been
ordered so that TRUE is the first level and FALSE the second. You can see this in the Environ-
ment panel, if you click on the arrow next to mald and look next to IsWord: it will say Factor
w/ 2 levels "TRUE","FALSE". You can also check the order of the levels of a factor with the
levels () function.

levels(mald$IsWord)

(1] "TRUE" "FALSE"

You can set the order of the levels with the factor () function. If you don’t specify the order
of the levels, the alphabetical order will be used. For example:

fac <- tibble(
fac = c(“a", ||a||, "b”, "b", ||a||)’
fac_1 = factor(fac),
fac 2 = factor(fac, levels = c("b", "a"))

)

levels(fac$fac_1)

[1] llall llbll

levels(fac$fac_2)

[1] ubn nau

278

We will use IsWord with the order TRUE and FALSE. This means that TRUE will be the reference
level and the RTs when IsWord is FALSE will be compared to the RTs of when IsWord is TRUE. In
other words, now the mean p varies depending on the level of IsWord. We need to numerically
code IsWord (i.e. use numbers to refer to the levels of the categorical predictor) to be able
to allow the mean to vary by the word type in the model formula. With treatment contrasts,
treatment coding is used to numerically code categorical predictors. Treatment coding uses
indicator variables which take the values 0 or 1. Let’s make an indicator variable w that
is 0 when IsWord is TRUE, or 1 when IsWord is FALSE. We only need one indicator variable
because there are only two levels and they can be coded with a 0 and a 1 respectively. This
way of setting up indicator variables (using 0/1) is called dummy coding. See Table 27.2 for
the correspondence between the predictor IsWord and the value of the indicator variable w.

Table 27.2: Treatment contrasts coding of the categorical predictor IsWord.

IsWord w

IsWord = TRUE 0
IsWord = FALSE 1

We can now update the equation of u:

RT; ~ Gaussian(u;, o)
i = By + By - w;

The subscript ¢ is an index of each observation in the data. There are 5000 observations in
mald so ¢ = [1..5000] (i is goes from 1 to 5000). RT; then is indexing the specific observations
in the data, RT), RT,, RTj, .., RTyy,o. Each observation is from a real or nonce word: this is
coded by w,;. The subscript 7 in w; is indexing the IsWord value of the ith observation. In the
data, RT; = 617 and w; = 0 (i.e. TRUE). The mean mu, also has a subscript i. The 7 is there
to say that now p depends on the specific observation 4, so that we can model a different mean
depending on w,. In fact, in the model in Chapter 24, ¢ was implied to keep things simple,
but technically it should be added, because the mean does depend on the value of sr:

RT; ~ Gaussian(u;, o)
pi = By + By - sry
These are just technicalities of the notation, so you shouldn’t be too tripped up about it, the

substance of the model is the same.

Going back to our model of RTs as a function of word type (“as a function of” is another way
of saying that you are modelling an outcome variable depending on a predictor), 5, and £,
are the regression coefficients, exactly like in the regression model with vowel duration and

279

speech rate. You can think of 3, as the model’s intercept and of 3; as the model’s slope. Can
you figure out why? Recall that a regression model with a numeric predictor is basically the
formula of a line. In Chapter 24, we modelled vowel duration as a function of speech rate.
The intercept of the regression line estimated by the model indicates where the line crosses
the y-axis when the z value is 0: in that model, that was the vowel duration when speech
rate is 0. In the model above, with RTs as a function of word type, the numeric predictor is
the indicator variable w, which stands for the categorical predictor IsWord. The formula of
a line really works just with numbers so for the formula to make sense, we had to make the
categorical predictor IsWord into a number and treatment contrasts is such one way of doing
S0.

Now, S, is the model’s intercept because that is the mean RT when w is 0 (like with vowel
duration when speech rate is 0; can you see the parallel?). And $; is the model’s slope because
B is the change in RT for a unit increase of w, which is when w goes from 0 to 1. This in turn
corresponds to the change in level in the categorical predictor. Do you see the connection? It’s
a bit contorted, but once you get this, it should explain several aspects of regression models
with categorical predictors and treatment contrasts. So p, is the sum of 3, and 3, - w;. w; is
0 (when the word is real) or 1 (the the word is a nonce word). That is why we write RT}: the
subscript ¢ allows us to pick the correct value of w; for each specific observation. The result
of plugging in the value of w; is laid out in the following formulae.

pi = By + By w;
pr =By + B8 -0= 5
pr =By +061-1=0y+ b

o When IsWord is TRUE, the mean RT is equal to f3.
e When IsWord is FALSE, the mean RT is equal to 5, + ;.

If 3, is the mean RT when IsWord is TRUE, what is 3, by itself? Simple.

By = pp — Pt
= (By + B1) — Bo

By is the difference between the mean RT when IsWord is TRUE and the mean RT when IsWord
is FALSE. As mentioned above, with treatment contrasts you are comparing the second level
to the first. So one regression coefficient will be the mean of the reference level, and the
other coefficient will be the difference between the mean of the two levels. I know this is not
particularly beginner-friendly, but this is the default in R when using categorical predictors
and it is the most common way to code categorical predictors, so you will frequently find tables
in academic articles with regression coefficients that have to be interpreted that way.

280

27.3 Model RTs by word type

That was a lot of theory, so let’s move onto the application of that theory. Fitting a regression
model with a categorical predictor like IsWord is as simple as including the predictor in the
model formula, to the right of the tilde ~. From now on we will stop including 1 + since an
intercept term is always included by default.

rt_bm 1 <- brm(
equivalent: RT ~ 1 + IsWord
RT ~ IsWord,
family = gaussian,
data = mald,
seed = 6725,
file = "cache/ch-regression-cat-rt_bm_1"

Treatment contrasts are applied by default: you do not need to create an indicator variable
yourself or tell brms to use that coding (which is both a blessing and a curse). The following
code chunk returns the summary of the model rt_bm_1.

summary (rt_bm_1)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: RT ~ IsWord
Data: mald (Number of observations: 5000)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 953.14 6.12 941.17 965.17 1.00 4590 2897
IsWordFALSE 116.34 8.80 98.74 134.14 1.00 4815 3235

Further Distributional Parameters:
Estimate Est.Error 1-95j% CI u-95J CI Rhat Bulk_ESS Tail_ ESS
sigma 312.47 3.11 306.44 318.60 1.00 4720 3456

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

281

The first few lines should be familiar: they report information about the model, like the
distribution family, the formula, the MCMC draws and so on. Then we have the Regression
Coefficients table, just like in the model of Chapter 24. The estimates of the coefficients
and the 95% Credible Intervals (Crls) are reported in Table 27.3 (the table was generated with
knitr::kable() from the R Note above! Expand the code to see it).

fixef(rt_bm_1) [|> knitr::kable()

Table 27.3: Regression coefficients from a model of RTs by word type.

Estimate Est.Error Q2.5 Q97.5

Intercept 953.1412 6.120423 941.16925 965.1697
IsWordFALSE 116.3413 8.800872 98.73942 134.1424

Just to remind you: the Estimate column is the mean of the posterior distribution of the
regression coefficients, and Est.Error is the standard deviation of the posterior distribution
of the regression coefficients. Q2.5 and Q97.5 are the lower and upper limit of the 95% CrI of
the posterior distribution of the regression coefficients. Let’s plot the posterior distributions
of the two coefficients.

mcmc_dens(rt_bm_1, pars = vars(starts_with("b_")))

282

940 950 960 970 100 120 140
Figure 27.4: Density plots of the posterior probability distributions of the regression coefficients

of model rt_bm_1.

e b_Intercept (Intercept in the model summary) is the mean RT when IsWord is TRUE.
This is 3, in the model’s mathematical formula.

o b_IsWordFALSE (IsWordFALSE in the model summary) is the difference in mean RT
between nonce and real words. This is ; in the model’s mathematical formula.

Moving onto the 95% Crls:

o The 95% Crl of Intercept f is [941, 965] ms: this means that there is a 95% probability
that the mean RT when IsWord is TRUE is between 941 and 965 ms.

o The 95% Crl of IsWordFALSE /3, is [99, 134] ms: this means that there is a 95% probability
that the difference in mean RT between nonce and real words is between 99 and 134 ms.

So here we have our answer: at 95% confidence (another way of saying at 95% probability),
based on the model and data, RTs for nonce words are 99 to 134 ms longer than RTs for real
words. What about the predicted RTs for nonce words?

27.4 Posterior predictions

The coefficients are just telling us the difference in RT between nonce and real words, but not
the predicted mean RT for nonce words. As in Chapter 25, we can simply plug in the draws

283

from the model according to the model formulae to obtain any estimand of interest, like the
posterior predictions of RTs when the word is not a real word. Remember, for nonce words
(w; = 1):

pr = Bo+ b1 1=05y+ 5

To get the predicted RTs for nonce words we need to sum b_Intercept and b_IsWordFALSE.
Since we are at it, we also create a column for real words (that is just b_Intercept so we are
basically just copying it that column; remember, p = ;).

rt_bm_1 draws <- as_draws_df(rt_bm_1) [>
mutate (
real = b_Intercept,
nonce = b_Intercept + b_IsWordFALSE
)

quantile2(rt_bm_1_draws$real, c(0.025, 0.975)) [> round()

q2.5 q97.5
941 965

quantile2(rt_bm_1_draws$nonce, c(0.025, 0.975)) |> round()

q2.5 q97.5
1057 1082

The Crl for nonce is the same as the one you see in the model summary for Intercept.
when the word is not a real word, the RTs are between 1057 and 1080 ms at 95% probability.
Compare this with the mean RTs when the word is a real word: 95% CrlI [941, 965] ms. Reaction
times are longer with nonce words than with real words, as b_IsWordFALSE indicated. The
conditional_effect() function from brms plots predicted values of the outcome variable
depending on specified predictors. We can use it to plot the 95% Crls (and mean) of the
predicted RTs depending on word type.

conditional_effects(rt_bm_1, effects = "IsWord")

284

1050

RT

1000

950 i*

TRUE FALSE
IsWord

I always find plotting the full posterior distributions to be more informative (and I find the plots
with error bars and dots to be potentially misleading, since they are just showing summaries
of the posteriors). We have already the posterior draws of RTs with real words (b_Intercept;
and those with nonce words, but to make plotting more straightforward we need to pivot the
data.

Pivoting is the process of changing the shape of the data from a long format to a wide format
and vice versa. You can find nice animations on Garrick Aden-Buie’s website that illustrate
the process visually. What we need is pivoting from a wide to a long format: rt_bm_1_draws
has two columns we are interested in, real and nonce, but to plot we need a column like
word_type which says if the posterior prediction is for real or nonce words and a column like
pred for the posterior prediction. We can achieve this with the pivot_longer () function from
tidyr (another tidyverse package). You can learn more about pivoting in the package vignette
Pivoting. We first select the two columns we want to pivot, real and nonce with select(),
then we pivot with pivot_longer (): the function needs to know which columns to pivot and
here we are saying to pivot all columns with the special tidyverse function everything () (note
that this only works with certain tidyverse functions). Then we need to tell pivot_longer ()
what we want to name the column with the original column names and what name we want
for the column with the values of the original columns. Check the result and play around with
the code to understand how pivoting works.

rt_bm_1_long <- rt_bm_1_draws |[>

select(real, nonce) |>
pivot_longer(everything(), names_to = "word_type", values_to = "pred")

285

https://www.garrickadenbuie.com/project/tidyexplain/#tidy-data
https://tidyr.tidyverse.org/index.html
https://tidyr.tidyverse.org/articles/pivot.html

Warning: Dropping 'draws_df' class as required metadata was removed.

rt_bm_1_long

A tibble: 8,000 x 2
word_type pred

<chr> <dbl>

1 real 944 .
2 nonce 1064.
3 real 959.
4 nonce 1070.
5 real 958.
6 nonce 1061.
7 real 954.
8 nonce 1080.
9 real 955.
10 nonce 1054.

i 7,990 more rows

Now we can plot the data with ggplot and ggdist’s stat_halfeye(). We are setting the
error bars to show the 50% and 95% Crl (.width = c(0.5, 0.95)). I have also added code
on the last line to manually set the “breaks” of the z-axis using the breaks argument in
scale_x_continuous().

rt_bm_1_long |>
ggplot(aes(pred, word_type)) +
stat_halfeye(.width = c(0.5, 0.95)) +
scale_x_continuous(breaks = seq(920, 1100, by = 20)) +
labs(
x = "Predicted RTs (ms)", y = "Word type"
)

286

real —a—

Word type

nonce —a—

940 960 980 1000 1020 1040 1060 1080 110(
Predicted RTs (ms)

Figure 27.5: Posterior predictions of RT by word type.

27.5 Reporting

Reporting regression models with categorical predictors is not too different from reporting
models with a numeric predictor, but there are a couple of things that you need to keep in
mind. With a categorical predictor you should report the estimates for the intercept, the
difference from the intercept and the predicted value for the second level in the categorical
predictor. You should also tell the reader how the categorical predictor was coded. Here is
the full report for our model of reaction times.

We fitted a Bayesian regression model using the brms package (Biirkner 2017) in
R (R Core Team 2025). We used a Gaussian distribution for the outcome variable,
reaction times (in milliseconds). We included word type (real vs nonce word) as the
regression predictor. Word type was coded using the default R treatment contrasts,
with real word set as the reference level.

Based on the model results, there is a 95% probability that the mean RT with real
words is between 941 and 965 ms (mean = 953, SD = 6). When the word is a nonce
word, the RTs are between 1057 and 1082 ms at 95% confidence (mean = 1069, SD
= 6). When comparing RTs for nonce vs real words, there is an 95% probability
that the difference is between 99 to 134 ms (mean = 116, SD = 9). The residual
standard deviation is between 306 and 319 ms (mean = 312, SD = 3).

287

27.6 Conclusion

To summarise, the model suggests that RTs with nonce words are 99-134 ms longer than
RTs with real words. Now, is a difference of 99-184 ms a linguistically meaningful one?
Statistics cannot help with that: only a well developed mathematical model of lexical retrieval
and related neurocognitive processes would allow us to make any statement regarding the
linguistic relevance of a particular result. This aspect applies to any statistical approach,
whether frequentist or Bayesian. Within a frequentist framework (which you will learn about
in Chapter 29), “statistical significance” is not “linguistic significance”. A difference between
two groups can be “statistically significant” and not be linguistically meaningful and vice versa.
Within the Bayesian framework, getting posterior distributions that are very certain (like the
ones we have gotten so far) doesn’t necessarily mean that we have a better understanding of
the processes behind the phenomenon we are investigating. After having obtained estimates
from a model, always ask yourself: what do those estimates mean, based on our current
understanding of the linguistic phenomenon under investigation?

27.7 Summary

e Categorical predictors can be included in regression models by coding them as
numbers.

e The most common coding system uses treatment contrasts. The reference level
is coded as 0 and the other level is coded as 1.

e The intercept is the mean outcome for the reference level of the categorical
predictor. The slope is the difference in mean outcome between the second level
and the reference.

288

28 More than two levels

Chapter 27 showed you how to fit a regression model with a categorical predictor. We modelled
reaction times as a function of word type (real or nonce) from the MALD dataset (Tucker et al.
2019). The categorical predictor IsWord (word type: real or nonce) was included in the model
using treatment contrasts: the model’s intercept is the mean of the first level and the “slope”
is the difference between the second level and the first. In this chapter we will look at new
data, Voice Onset Time (VOT) of Mixean Basque (Egurtzegi and Carignan 2020), to illustrate
how to fit and interpret a regression model with a categorical predictor that has three levels,
phonation (voiced, voiceless unaspirated, aspirated).

28.1 Mixean Basque VOT

The data egurtzegi2020/eu_vot.csv contains measurements of VOT from 10 speakers of
Mixean Basque (Egurtzegi and Carignan 2020). Mixean Basque contrasts voiceless unaspi-
rated, voiceless aspirated and voiced stops. Let’s read the data.

library(tidyverse)

eu_vot <- read_csv("data/egurtzegi2020/eu_vot.csv")
eu_vot

A tibble: 1,801 x 9

speaker word phone prev post voicing start end VOT

<chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1 S06 djela d <p:> j voiced 16.2 16.2 0.0204
2 506 basakalddyb <p:> a voiced 21.0 21.0 -0.0576
3 506 bihamunjanbhb <p:> i voiced 24.0 24.0 -0.0575
4 S06 demoa d <p:> e voiced 35.4 35.5 -0.0810
5 506 b e b <p:> e voiced 38.8 38.8 -0.0528
6 S06 b a b <p:> a voiced 50.9 50.9 -0.0407
7 506 b a) <p:> a voiced 56.8 56.8 0.0477
8 S06 denak d <p:> e voiced 60.6 60.7 -0.0856

289

9 S06 dalija d <p:> a voiced 62.4 62.4 -0.0396
10 S06 dalLjaikilJ d <p:> a voiced 72.9 72.9 -0.0366
i 1,791 more rows

Based on our general knowledge of VOT, the VOT should increase from voiced to voiceless
unaspirated to voiceless aspirated stops. We can use a Gaussian regression model to assess
whether our expectations are compatible with the data. The eu_vot data has a voicing
column that tells only if the stop is voiceless or voiced, but we need a column that further
differentiates between unaspirated and aspirated voiceless stops. We can create a new column,
phonation depending on the phone, using the case_when() function inside mutate().

case_when() works like an extended ifelse() function: while ifelse() is restricted to two
conditions (i.e. when something is TRUE or FALSE), chase_when() allows you to specify
many conditions. The general syntax for the conditions in case_when() is condition ~
replacement where condition is a matching statement and replacement is the value that
should be returned when there is a match. In the following code, we use case_when() to
match specific phones in the phone column and based on that we return voiceless, voiced
or aspirated. These values are saved in the new column phonation. We also convert the VOT
values from seconds to milliseconds by multiply the VOT by 1000 in a new column VOT_ms.

eu_vot <- eu_vot |[>

mutate (
phonation = case_when(
phone %inj c("p", "t", "k") ~ "voiceless",

phone %in%, c("b", "d", "g") ~ "voiced",
phone %in% c("ph", "th", "kh") ~ "aspirated"
),
convert to milliseconds
VOT_ms = VOT *x 1000
)

Figure 28.1 shows the densities of the VOT values for voiced, voiceless (unaspirated) and
(voiceless) aspirated stops separately. Do the densities match our expectations about VOT?

eu_vot |>
drop_na(phonation) [>
ggplot (aes(VOT_ms, fill = phonation)) +
geom_density(alpha = 0.5)

290

0.06

0.04

density

0.02

0.00

Exercise 1

Recreate the following plot.

VOT (ms)

100

-100

-200

-200

L

&3

oy
K

& @

aspirated

-100 0

VOT_ms

L.

Figure 28.1

phonation

|:| aspirated
|:| voiced
|:| voiceless

voiced

Phonation

291

voiceless

Hint

The fill legend is not really needed, since the z-axis already separates the different phona-
tions types, but different fill colours can help with the overall legibility of the violins since
they highlight the area covered by the violin shape.

To remove the legend, you should use the theme() function. Check the documentation
of ?theme and search online for the argument value that hides the legend.

Solution

Have you tried legend.position in theme()?
Show me

eu_vot [>
drop_na(phonation) |[>
ggplot (aes(phonation, VOT_ms, fill = phonation)) +
geom_jitter(alpha = 0.1, width = 0.2) +
geom_violin(alpha = 0.8, width = 0.2) +
labs(x = "Phonation", y = "VOT (ms)") +
theme (legend.position = "none")

Exercise 2

Calculate appropriate measures of central tendency and dispersion of VOT depending on
the phonation type.

28.2 Treatment contrasts with three levels

Let’s proceed with modelling VOT. We will assume that VOT values follow a Gaussian dis-
tribution: as with reaction times, this is just a pedagogical step for you to get familiar with
fitting models with categorical predictors, but other distribution families might be more ap-
propriate. While for reaction times there are some recommended distributions (which you
will learn about in Chapter 31), there are really no recommendations for VOT, so a Gaussian
distribution will have to do for now.

Before fitting the model, it is important to go through the model’s mathematical formula and
to pay particular attention to how phonation type is coded using treatment contrasts. The
phonation predictor has three levels: aspirated, voiced and voiceless. The order of the levels
follows the alphabetical order. You will remember from Chapter 27 that the mean of the first
level of a categorical predictor ends up being the intercept of the model while the difference
of the second level relative to the first is the slope. With a third level, the model estimates

292

another “slope”, which is the difference between the third level and the first. With treatment
contrasts, the second and higher levels of a categorical predictor are compared (or contrasted)
with the first level. With the default alphabetical order, this means that the intercept of the
model will tell us the mean VOT of aspirated stops, and the mean of voiced and voiceless stops
will be compared to that of aspirated stops.

An other important aspect of treatment coding of categorical predictors that we haven’t dis-
cussed is the number of indicator variables needed: the number of indicator variables is always
the number of the levels of the predictor minus one (N — 1, where N is the number of levels).
It follows that a predictor with three levels needs two indicator variables (N =3, 3 —1 = 2).
This is illustrated in Table 28.1. For each observation, phyy, indicates if the observation is
from a voiced stop (1) or not (0), and phy,, indicates if the observation is from a voiceless
(unaspirated) stop (1) or not (0). Of course, if the observation if from an aspirated stop, that
is neither a voiced nor a voiceless (unaspirated) stop, so both phyp and phy,, are 0.

Table 28.1: Treatment contrasts coding of the categorical predictor phonation.

phonation phyp Dhyy,
phonation = aspirated 0 0
phonation = voiced 1 0
phonation = voiceless 0 1

Now that we know how phonation is coded, we can look at the model formula.

VOT, ~ Gaussian(p,, o)
i = Bo + By - Phypp) + B - Phyry
The formula states that each observation of VOT come from a Gaussian distribution with a

mean and standard deviation and that the mean depends on the value of the indicator variables
phyp and phyy: that is what the subscript ¢ is for.

Exercise 3

Work out the formula of the mean VOT for each level of phonation by substituting the
correct value for phyp and phyy,.

Hint

For example, for phonation = aspirated:

293

i = By + B1 - phyppg + Ba - Phyy
=B+ B1-0+5,-0
= o
So the mean VOT with aspirated stops is 3.

The code below fits a Gaussian regression model, with VOT (in milliseconds) as the outcome
variable and phonation type as the (categorical) predictor. Phonation type (phonation) is
coded with treatment contrasts. Before fitting the model, answer the question in Quiz 1
below.

library (brms)

vot_bm <- brm(
VOT_ms ~ phonation,
family = gaussian,
data = eu_vot,

seed = 6725,

file = "cache/ch-regression-more-vot_bm"
)

Quiz 1

How many regression coefficients are there in the model above?

. (A)2
. (B) 3
. (C) 4

When you run the model you will see this message: Warning: Rows containing NAs were
excluded from the model.. This is really nothing to worry about: it just warns you that
rows that have NAs were dropped before fitting the model. Of course, you could also drop them
yourself in the data and feed the filtered data to the model. This is probably a better practice
because it gives you the opportunity to explicitly find out which rows have NAs (and why).

Quiz 1

Based on the density plots of VOT you made above, which of the following
sets of expectations makes sense?

294

o (A) By, By, By should have negative values.
o (B) f, should have positive values and f3;, 3, should have negative values.

o (C) By, B; should have positive values, 5 should have negative values.

Solution

You can just check the summary of the model. Does the summary meet your expecta-
tions?

summary (vot_bm)

Carefully look through the Regression Coefficients of the model and make sure you under-
stand what each row corresponds to. It should be clear by now that while the first coefficient,
the “intercept”, is the mean VOT with aspirated stops, the second and third coeflicients are
the difference between the mean VOT of aspirated stops and the mean VOT of voiced and
voiceless stops respectively. This falls out of the formulae you worked out in Exercise 3.

28.3 Posterior predictions

We can obtain the posterior predictions for the VOT of voiced and voiceless stops as we did
in Section 27.4. If you have completed Exercise 3 above, the following code should have no
surprises.

vot_bm_draws <- as_draws_df(vot_bm) |>
mutate(
aspirated = b_Intercept,
voiced = b_Intercept + b_phonationvoiced,
voiceless = b_Intercept + b_phonationvoiceless

)

Let’s also pivot the draws to a longer format with pivot_longer (). Ignore the warning about
dropping the draws_df class.

vot_bm_long <- vot_bm_draws |>

select(aspirated:voiceless) | >
pivot_longer(everything(), names_to = "phonation", values_to = "pred")

295

Warning: Dropping 'draws_df' class as required metadata was removed.

vot_bm_long

A tibble: 12,000 x 2
phonation pred

<chr> <dbl>
1 aspirated 33.0
2 voiced -45.4
3 voiceless 20.2
4 aspirated 30.6
5 voiced -45.4
6 voiceless 20.1
7 aspirated 29.8
8 voiced -45.2
9 voiceless 19.7

10 aspirated 31.3
i 11,990 more rows

This time I will show you how to use the long draws tibble to create a summary table. This
is what the following code does: the only new bit is the paste(..., collapse = ", ") part.
This is needed because quantile2() returns a vector with two elements (one with the lower
limit and one with the upper limit of the CrI) but we want to collapse that into a single string,
with the two limits separated by a comma and space. The resulting string is wrapped between
square brackets, a typical format for reporting Crls.

vot_bm_tab <- vot_bm_long |>
group_by (phonation) |[>
summarise (
mean = mean(pred), sd = sd(pred),

*99% = pasteO("[", paste(quantile2(pred, c(0.005, 0.995)) [|> round(), collapse = ", "),
“60%° = pasteO("[", paste(quantile2(pred, c(0.2, 0.8)) [|> round(), collapse = ", "), "]"
)
vot_bm_tab

A tibble: 3 x 5

phonation mean sd "99%° “60%"
<chr> <dbl> <dbl> <chr> <chr>

1 aspirated 32.6 1.50 [29, 37] [31, 34]

2 voiced -44.4 1.09 [-47, -42] [-45, -43]

3 voiceless 19.8 0.475 [19, 21] [19, 20]

296

The function kable() from the knitr package provides us with a convenient way to output
the table in vot_bm_tab as a nicely formatted table in a rendered Quarto file. Table 28.2 is
indeed the output of R code using knitr: :kable(). Unfold the code to see it (click on the
little triangle to the left of Code below). Check the documentation of kable() to learn about
its arguments.

vot_bm_tab |>
knitr: :kable(
col.names = c("", "Mean", "SD", "99% CrI", "60% CrI"),
digits = 1, align = c("rcccc")

)

Table 28.2: Posterior summaries from a Bayesian regression model of VOT.

Mean SD 99% CrI 60% Crl

aspirated 32.6 1.5 [29,37] [31, 34]
voiced -44.4 1.1 [-47,-42] [-45, -43]
voiceless 19.8 0.5 [19,21] [19, 20]

In Table 28.2, I reported the posterior mean, SD and 99% and 60% Crls of the posterior
distributions of the predicted VOT of aspirated, voiced, and voiceless stops. Why 99% and
60%? There is nothing special with 95% Crls and as mentioned in previous chapters you
should report multiple levels. I admit that in this case, as in the models from previous chapters
reporting more than one Crl is overkill, because our posteriors are so certain. So take this as

just an example of how you could report results in a table. Probably, a 99% CrI would have
sufficed.

28.4 Reporting

The following paragraph shows you how you could write up the model and results in a paper.

We fitted a Bayesian regression model to Voice Onset Time (VOT) of Mixean
Basque stops. We used a Gaussian distribution for the outcome and phonation
(aspirated, voiced, voiceless) as the only predictor. Phonation was coded using the
default treatment coding.

According to the model, the mean VOT of aspirated stops is between 29 and 37
ms, of voiced stops is between -47 and -42 ms, of voiceless stops is between 19
and 21 ms, at 99% probability. Table 28.2 reports mean, SD, 99% and 60% CrIs.
When comparing voiced and voiceless stops to aspirated stops, at 99% confidence,

297

the VOT of voiced stops is 72-82 ms shorter than that of aspirated stops (mean =
-77, SD = 1.86), while the VOT of voiceless stops is 9-17 ms shorter than that of
aspirated stops (mean = -13, SD = 1.58).

You might find that certain authors use 8 instead of “mean” for the posterior mean reported
between parentheses: for example, (8 = 33, SD = 1.5). The g stands for B, which is a notation
to indicate that the § is estimated (that’s what the little hat on top of the letter signifies). This
practice is probably more common in the frequentist approach than the Bayesian approach
to inference. I find it more straightforward to say “mean” since that is what the estimand
is: the mean of the posterior distribution of the coefficient. Similarly, some might use “SE”
for standard error instead of SD. As long as one is consistent, it doesn’t matter much since
there are indeed different traditions (and even different fields within linguistics might prefer
different ways of reporting).

Note that readers not used to Bayesian statistics might find the choice of Crl levels questionable
or at least surprising. As said many times, there is nothing special about 95% Crl: it is a
misguided historical accident from frequentist approaches to default to 95%. The next chapter
is dedicated precisely to frequentist statistics and how this approach is misused in research.
Most of the current research in linguistics is conducted using problematic frequentist methods,
so the only thing you can do is learn where the problems lie and do your best to avoid them
in your own research.

298

29 Frequentist statistics, the Null Ritual and
p-values

Area Research methods | Area Statistics

In Chapter 20, you were introduced to the Bayesian approach to inference, and we only briefly
mentioned frequentist statistics. It is very likely that you had heard of p-values before, espe-
cially when reading research literature. You will have also heard of “statistical significance”,
which is based on the p-value obtained in a statistical test performed on data. This section
will explain what p-values are, how they are often misinterpreted and misused (Cassidy et al.
2019; Gigerenzer 2004), and how the “Null Ritual”, a degenerate form of statistics derived from
different frequentist frameworks (yes, you can do frequentist statistics in different ways!) that
has become the standard in research, despite not being a coherent way of doing frequentist
statistics (Gigerenzer, Krauss, and Vitouch 2004).

29.1 Frequentist statistics, feuds and eugenics: a brief history

A lot of current research is carried out with frequentist methods. This is a historical accident,
based on both an initial misunderstanding of Bayesian statistics (which is, by the way, older
than frequentist statistics) and the fact that frequentist maths was much easier to deal with
(and personal computers did not exist at the time). Bayesian statistics, rooted in Thomas
Bayes‘s (1701-1771) work on updating probabilities with new evidence based on a specific
interpretation of Bayes’ Theorem, remained largely dormant until the 20th century due to
computational difficulties and philosophical debates. It gained widespread traction in the
1990s with advances in computational methods, especially the development of Markov Chain
Monte Carlo (Chapter 25). However, modern frequentist statistics is attributed to three
statisticians whose lives span several decades before the time Bayesianism found a place in
statistical debates: Ronald Fisher (1890-1926), Jerzy Neyman (1894-1981) and Egon Pearson
(1895-1980, the son of another statistician, Karl Pearson 1857-1936).

The history of frequentist statistics is a tale of heated debates, feuds and the now discredited
field of eugenics (a colonial movement with the aim of improving the genetic “quality” of human
populations). Francis Galton (1822-1911) is considered the originator of eugenics: this is the
same Galton who came up with the idea of “regression toward mediocrity” which gives the name
to regression models (see Spotlight box in Chapter 23). Karl Pearson was deeply influenced by

299

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Francis_Galton
https://en.wikipedia.org/wiki/Karl_Pearson

Galton and saw statistics as a tool for improving racial fitness. Pearson’s Biometric School in
Britain was explicitly tied to eugenics research. Ronald Fisher was another British statistician
who strongly believed in eugenics and racial differences. While both K. Pearson and Fisher were
proponents of eugenics, they differed in their understanding of statistics. Fisher criticised K.
Pearson’s approach as too mechanic and simplistic (thus earning the elder statistician’s lasting
disapproval). Fisher came up with the concept of statistical significance and devised the
famous p-value as a way to quantify statistical significance based on data, against a hypothesis
(to be nullified) of how the researcher thought the data were produced.

Fisher’s contemporaries Jerzy Neyman and Egon Pearson (the son of K. Pearson), who both
rejected eugenics, found Fisher’s critiques to K. Pearson’s (the father) approach well-founded,
but they themselves thought Fisher’s significance testing fell short. While Fisher’s significance
testing was based on quantifying significance in light of a single hypothesis, Neyman and
E. Pearson (the son) argued that one should contrast two opposing hypotheses and control
for error rates in rejecting one and accepting the other. They thus introduced the idea of
“significance level”, a threshold which determined if one accepted a result as statistical
significant or not. In sum, while Fisher’s approach was focused on estimating the degree
of statistical significance, Neyman and Pearson’s approach was more interested in decision-
making under uncertainty. “Fisherian frequentism” and “Neyman—Pearson frequentism”, as
they later became to be known, are incompatible approaches, despite both being based on the
same statistical concept of the p-value, because they entail two very different interpretations
of statistical significance (and the objective of research more generally).

29.2 Null Hypothesis Significance Testing

Moving forward in time to the last three decades, the commonly accepted approach to fre-
quentist inference is the so-called Null Hypothesis Significance Testing, or NHST. As
practised by researchers, the NHST approach is an incoherent mix of Fisherian and Neyman—
Pearson frequentism (Perezgonzalez 2015). The main tenet of the NHST is that you set a
null hypothesis and you try to reject it (as Fisher expected statistical significance to be
used). A null hypothesis is, in practice, always a nil hypothesis: in other words, it is the
hypothesis that there is no difference between two estimands (these usually being means of
two or more groups of interest). This aspect is a great departure from both Fisherian and
Neyman—Pearson frequentism, since neither says anything about the null hypothesis having to
necessarily be a nil hypothesis. Then, using a variety of numerical techniques, one obtains a p-
value, i.e. a frequentist probability. The p-value is used for inference: if the p-value is smaller
than a threshold (Neyman—Pearson’s significance level), you can reject the nil hypothesis; if
the p-value is equal to or greater than the threshold, you cannot reject the null hypothesis.

The following section explains p-values within the NHST approach, since that is the approach
researchers adopt (knowingly or less knowingly) when using p-values. Note however that the
NHST approach has been heavily criticised by frequentist and Bayesian statisticians alike and

300

https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Jerzy_Neyman
https://en.wikipedia.org/wiki/Egon_Pearson

has resulted in the proposal of alternative, stricter, versions of NHST, like the frequentist
Statistical Inference as Severe Testing (SIST, Mayo 2018; for a critique see Gelman et al.
2019). The inconsistent nature of NHST has led to the elaboration of the concept and label
“Null Ritual” (Gigerenzer 2004, 2018; Gigerenzer, Krauss, and Vitouch 2004) and the slogan-
titled paper The difference between “significant” and “not significant” is not itself statistically
significant (Gelman and Stern 2006). p-values are very commonly mistaken for Bayesian
probabilities (Cassidy et al. 2019) and this results in various misinterpretations of reported
results. Section 29.4 explains the main issues with the Null Ritual and invites you to always
think critically when reading results and discussions in published research.

29.3 The p-value

To illustrate p-values, we will compare simulated durations of vowels when followed by voiceless
consonants vs voiced consonants. It is a well-known phenomenon that vowels followed by voiced
consonants tend to be longer than vowels followed by voiceless ones (see review in Coretta
2019a). Let’s simulate some vowel duration observations: we do so with the rnorm() function,
which takes three arguments: the number of observations to sample and the mean and standard
deviation of the Gaussian distribution to sample observations from. We use a Gaussian(80, 10)
for durations before voiceless consonants, and a Gaussian(90,10) for durations before voiced
consonants. In other word, there is a difference of 10 milliseconds between the two means. Since
the rnorm() function randomly samples from the given distribution, we have set a “seed” so
that the code will return the same numbers every time it is run, for reproducibility.

set.seed(2953)

Vowel duration before voiceless consonants
vdur_vls <- rnorm(15, mean = 80, sd = 10)
vdur_voi <- rnorm(15, mean = 90, sd = 10)

Normally, you don’t know what the underlying means are, we do here because we set them. So
let’s get the sample mean of vowel duration in the two conditions, and take the difference.

mean_vls <- mean(vdur_vls)
mean_voi <- mean(vdur_voi)

diff <- mean_voi - mean_vls
diff

[1] 7.43991

The difference in the sample means is about 7.4. Now, a NHST researcher would define the
following two hypotheses:

301

e Hy: the difference between means is 0.

e H1: the difference between means is not 0.

H,, simply states that there is no difference between the mean of vowel duration when followed
by voiced or voiceless consonants. This is the “null” hypothesis. Hy, called the “alternative”
hypothesis, states that the difference between means is different from exactly 0. We could
have decided to go with “greater than 0”, rather than just “not 0”, because we know about
the trend of longer vowels before voiced consonants, so the difference should be positive. But
this is not how NHST is usually set up: it is always assumed that the H; is “the difference
between means is not 0.

Here is where things get tricky: if H, is correct, then we should observe a difference as close to
0 as possible. Why not exactly 07 Because it is impossible for two samples (even if they come
exactly from the same distribution) to have exactly the same mean for the difference to be 0.
But how do we define “as close as possible”? The frequentist solution is to define a probability
distribution of the difference between means centred around 0. This means that 0 has the
highest probability, but that negative and positive differences around 0 are also possible.

William Sealy Gosset (1876-1937), a statistician, chemist and brewer who worked for Guin-
ness the brewery, proposed the t-distribution for this purpose. Gosset, though employed at
Guinness, was sent to University College London in 1906-1907 to study statistics under Karl
Pearson (the father), who at the time was the leading authority in mathematical statistics.
Guinness allowed this because Gosset needed advanced statistical tools to handle small exper-
imental data sets in brewing and agriculture. K. Pearson’s Biometrika journal became the
outlet where Gosset published his famous 1908 paper “The probable error of a mean” (Stu-
dent 1908). K. Pearson encouraged Gosset to publish it, though Guinness insisted that he use
a pseudonym to protect trade secrets, so Gosset published under the pseudonym “Student”.
Because of this, the t-distribution is also called the Student-¢ distribution. Gosset argued that
the t-distribution was an appropriate probability distribution for differences between means,
especially with small sample sizes.

The t-distribution is similar to a Gaussian distribution, but the probability on either side of
the mean declines more gently than with the Gaussian. As the Gaussian, the t-distribution
has a mean and a standard deviation. It has an extra parameter: the degrees of freedom, or
df. The df affect how quickly the probability declines moving away from zero: the higher the
df the more quickly the probability gets lower. This is illustrated in Figure 29.1. The figure
shows four different t-distributions: what they all have in common is that the mean is 0 and
the standard deviation is 1. These are called “standard” ¢-distributions. Where they differ is
in their degrees of freedom. When the degrees of freedom are infinite (Inf), the ¢-distribution
is equivalent to a Gaussian distribution.

Degrees of freedom to compare
dfs <- c(1, 2, 5, Inf)

302

https://en.wikipedia.org/wiki/William_Sealy_Gosset

Create data
data <- tibble(df = dfs) |>
mutate(data = map(df, ~ {
tibble(
x = seq(-4, 4, length.out = 500),
y = if (is.infinite(.x)) dnorm(seq(-4, 4, length.out = 500))
else dt(seq(-4, 4, length.out = 500), df = .x)
)
P 1>

unnest (data)

Plot
ggplot(data, aes(x = x, y = y, color = as.character(df))) +
geom_line(linewidth = 1) +

labs(
title = "t-Distributions",
x = "t-statistic", y = "Density",
color = "DFs"
) +
scale_color_brewer(palette = "Setl")
t—Distributions
0.4
0.3
DFs
,,2‘ —]
202 —_2
[}
(@] — 5
== |nf
0.1
0.0
-4 -2 0 2 4
t—statistic

Figure 29.1: Example t-distributions with different degrees of freedom and fixed mean and
standard deviation (mean = 0, sd = 1).

303

Why mean 0 and standard deviation 17 Because we can standardise the difference between the
two means and always use the same standard ¢-distribution, so that the scale of the difference
doesn’t matter: we could be comparing milliseconds, or Hertz, or kilometres. To standardise
the difference between two means, we calculate the t-statistic. The {-statistic is a standardised
difference. Here’s the formula:

t: 2 2
iL4_§;
ny Ny

t is the ¢-statistic.

e 7, and I, are the sample means of the first and second group (the order doesn’t really
matter).

e s7 and s3 are the variance of the first and second group. The variance is simply the
square of the standard deviation (expressed with s here).

e n, and n, are the number of observations for the first and second group (sample size).

We have the means of vowel duration before voiced and voiceless consonants and we know the
sample size (15 observations per group), so we just need to calculate the variance.

var_vls <- sd(vdur_vls)~2 # also var(vdur_vls)
var_voi <- sd(vdur_voi)“ 2 # also var(vdur_voi)

tstat <- (mean_voi - mean_vls) / sqrt((var_voi / 15) + (var_vls / 15))

tstat

[1] 2.437442

So the t-statistic for our calculated difference is 2.4374424. Gosset introduced the ¢-statistics
as a tool for quantile interval estimation and for comparing means, but hypothesis testing
wouldn’t be “invented” until Fisher’s work on the p-value one or two decades later. Fisher took
Gosset’s t-statistic and embedded it into his broader significance testing framework. Fisher
popularized the use of the t-distribution for calculating p-values: the probability, under the
null hypothesis, of obtaining a t¢-statistic as extreme or more extreme than the observed value.
This re-framing changed the purpose of Gosset’s work from estimation to a frequentist test of
significance.

Now, after having obtained the t-statistic, the NHST researcher would ask: what is the prob-
ability of finding a t-statistic (and the difference in means it represents) this large or larger,
assuming that the ¢-statistic (and the difference) is 0. This probability is Fisher’s p-value.
You should note two things:

304

o First, the part about the real difference being 0. This is H, from above, our null hypoth-
esis that the difference is 0. For a p-value to work, we must assume that H is always
true. Otherwise, the frequentist machinery does not work.

e Another important aspect is the “difference this large or larger”: due to how probability
density functions work, we cannot obtain the probability of a specific value, but only the
probability of an interval of values (Chapter 19). The NHST story goes that, if H, is
true, you should not get very large differences, let alone larger differences than the one
found.

The next step is thus to obtain the probability of ¢t > 2.4374424 (t being equal or greater than
2.4374424), given a standard ¢-distribution. Before we can do this we need to pick the degrees
of freedom of the distribution, because of course these affect the probability. The degrees of
freedom are calculated based on the data with the following, admittedly complex, formula:

df <- ((var_voi/15 + var_vls/15)72) /
(((var_voi/15)72 / (156 - 1)) + ((var_vls/15)72 / (15 - 1)))

The degrees of freedom for our data are approximately 28. Figure 29.2 shows a t-distribution
with those degrees of freedom and a dashed line where our t-statistic falls. Now, since we
set, H; to be “the difference is not 0”, we are including both positive and negative differences
between the means. The sign of the t-statistic reflects the sign of the difference: positive ¢
means a positive difference, while negative ¢ indicates a negative difference between the two
means. Since H; is non-directional (it does not specify whether the difference is positive or
negative), the p-value must account for extreme values of the ¢-statistic in both directions.
This is called a two-tailed t¢-test: the p-value is the probability of observing a t-statistic at
least as extreme as the one obtained, in either tail of the ¢-distribution.

Create data
data <- tibble(df = df) [>
mutate(data = map(df, ~ {
tibble(
x = seq(-4, 4, length.out = 500),
y = if (is.infinite(.x)) dnorm(seq(-4, 4, length.out = 500))
else dt(seq(-4, 4, length.out = 500), df = .x)
)
P 1>

unnest (data)

305

Plot
ggplot(data, aes(x = x, y = y)) +
geom_line(linewidth = 1) +
geom_vline(xintercept = tstat, linetype = "dashed") +
geom_vline(xintercept = -tstat, linetype = "dotted") +
geom_area(
data = subset(data, x >= tstat),
aes(x = x, vy = y),
£ill = "purple", alpha = 0.3
)+
geom_area(
data = subset(data, x <= -tstat),
aes(x = x, y = y),
£ill = "purple", alpha = 0.3
) +
annotate(
"text", x = 3, y = 0.05, label = "t-statistic"
)+
labs(
title = glue::glue("Standard t-Distribution with df = {round(df)}"),
x = "t-statistic", y = "Density",
caption = "The sum of the shaded areas is the p-value."

)

306

Standard t—Distribution with df = 28

1
0.4 .
1
1
1
1
0.3 \
1
1
2 !
@02 ;
8 |
1
1
0.1 1
1
I - -
t—statistic
0.0
- 1
-4 -2 0 2 4
t—statistic

The sum of the shaded areas is the p—value.

Figure 29.2: Standard t-distribution and obtained t-statistic.

In Figure 29.2, the dotted line to the left of the distribution marks the t¢-statistic but with
negative sign. The shaded purple area on both tails of the distribution marks the area under
the density curve with ¢ values as extreme or more extreme than the obtained ¢-statistic. The
size of this area is the probability that we get a ¢ value as extreme or more extreme than the
obtained t-statistic, given that H is true. This probability is the p-value! The part “given that
H, is true” shows that the p-value is a conditional probability, conditional on H, being true:
we could write this as p = P(d|H,), where the vertical bar | indicates that the probability
of the ¢-statistic is conditional on H, and d stands for “data”, or more precisely for “data as
extreme or more extreme than the one observed”. You have already encountered conditional
probabilities in Chapter 20, in Bayes’ Theorem.

You can get the p-value in R using the pt () function. You need the t-value and the degrees of
freedom. These are saved in tstat and df from previous code. We also need to set another
argument, lower.tail: this argument, when set to TRUE, states that we want the probability
of getting a t value that is equal or less than the specified ¢ value, but we want the probability
of getting a ¢ value that is equal or greater than the specified ¢ value, since the t-value is
positive, so we set lower.tail to FALSE. Since this is a two-tailed t#-test, we also need the
probability for the negative tail. Since the distribution is symmetric around 0, the upper and
lower-tail probabilities given a t-statistic are the same, so we can simply multiply the upper-tail
probability by 2.

307

pt() times 2 to get the two-tailed prob
pvalue <- pt(tstat, df, lower.tail = FALSE) * 2
pvalue

[1] 0.02150441

In other words, assuming H,, is true and there is not difference between the two groups of
vowel duration, the probability of obtaining a t¢-statistic as extreme or more extreme than
+ 2.44 is approximately 0.02. In other words, there is approximately a 2% probability that
the difference between durations of vowels followed by voiced or voiceless consonants is + 7
ms or larger. Of course, we want the p-value to be as small as possible: if H|, is true and
the true difference is 0, finding a large difference should be very unlikely (think about the
t-distribution: values away from 0 are less likely than 0 and values closer to 0). This was the
original formulation of Fisher’s statistical testing: the p value could be taken as the degree of
significance. However, Neyman and Pearson argued that a threshold should be decided and
that a binary decision regarding significance should be taken.

How do we choose how small a p-value is small enough? Is 1% small enough? What about
0.5%? 5%?, maybe 10%? This is what the so-called a-level is for (read “alpha level”, from
the Greek letter o). We will get back to the issue of setting an a-level in the next section, but
for now know that in social research it has become standard to set it to 0.05. In other words,
if the p-value is lower than a = 0.05 then we take the p-value to be small enough, otherwise
we don’t. When the p-value is smaller than 0.05, we say we found a statistically significant
difference, when it is equal or greater than 0.05, we say we found a statistically non-significant
difference. When we find a statistical significant difference, the NHST story goes, we say that
we reject the null hypothesis H,. In our simulated example of vowel duration, the p-value is
smaller than 0.05, so we say the mean vowel durations before voiced vs voiceless consonants
are (statistically) significantly different from each other.

p-value

A p-value is the probability of obtaining a result as extreme or more extreme than the
one obtained, assuming the null hypothesis is true.

29.4 The Null Ritual

Gigerenzer (2004) calls the way researchers perform NHST the “null ritual”. He defines the
null ritual as the following procedure (Gigerenzer 2004, 588):

308

1. Set up a statistical null hypothesis of “no mean difference” or “zero correlation.” Don’t
specify the predictions of your research hypothesis or of any alternative substantive
hypotheses.

2. Use 5% as a convention for rejecting the null. If significant, accept your research hypoth-
esis. Report the result as p < 0.05, p < 0.01, or p < 0.001 (whichever comes next to the
obtained p-value).

3. Always perform this procedure.

Gigerenzer (2004) explains how the null ritualistic approach to frequentism, or NHST, is an
inconsistent hybrid of Fisher’s statistical significance testing and Neyman—Pearson decision
theory. Fisherian frequentism did not have an a-level: the p-value was used as a degree
of statistical significance. Neyman and Pearson rejected the idea of significance degree and
argued for the use an a-level, but they in no way proposed a fixed level and, quite the opposite,
urged researchers to set the a-level on a case-by-case basis. Moreover, Fisher’s null hypothesis
didn’t have to be a nil hypothesis: you could set your null hypothesis (the hypothesis to be
“nullified”) to anything it made sense, so you could have for example H, : 6 = +2.5 (where
d “delta” is the difference between means) and the p-value would be about nullifying that
hypothesis, not 6 = 0.

There is another level that is relevant to Neyman—Pearson statistics that is very often glossed
over: the -level, also known as statistical power. Statistical power is the probability of finding
a significant difference when there is a real difference. In social sciences, this is arbitrarily set
to 0.8: i.e., there should be an 80% probability of finding a significance difference where there
is one. Statistical power is in large part determined by the magnitude of the difference and the
variance of the groups being compared. With small and very noisy differences, you need a larger
sample size to reach a high statistical power. As with the a-level, a researcher should set the
[-level on a case-by-case basis. Once a statistical power level is chose, a researcher is supposed
to run a prospective power analysis (Brysbaert and Stevens 2018; Brysbaert 2020): this is a
procedure that, given the chosen statistical power and hypotehsised difference magnitude and
variance, helps you determine a specific sample size needed to reach that statistical power.
Calculating p-values without prospective power analysis is incorrect and yet has become the
norm.

Furthermore, researchers consistently misinterpret p-values and frequentist inference more gen-
erally (Gigerenzer, Krauss, and Vitouch 2004; Gigerenzer 2018; Perezgonzalez 2015; Cassidy
et al. 2019). There is a very common tendency to confuse the p-value for the probability
that the null hypothesis H is true. This is incorrect because the p-value is the probability
P(d|H,): it is conditional on H|, being true and it is clearly not P(H,). Another misinterpre-
tation takes the p-value as the inverse of the probability that H; is true: again, this must be
false because P(d|H,) is the probability of the “data” given H,,, not the probability of H, (in
which case, assuming contrasting hypotheses, then we would indeed have P(H,) = —P(H,)).
Finally, something dubbed “Bayesian wishful thinking” by Gigerenzer (2018), is the belief
that the p-value is the probability of H, given the data (P(H|d)) or worse the inverse of the

309

probability of H, given the data (P(H;|d)). You might see why it is called Bayesian wishful
thinking: a Bayesian posterior probability, as per Bayes’ Theorem, is precisely the probability
of a hypothesis given the data: P(h|d) (Chapter 20). However, a p-value is not P(h|d) but
rather P(d|H,).

These are just the main issues and misinterpretation of the null ritual NHST and if you'd
like to learn more about this, I strongly recommend you to read Gigerenzer (2004) and the
other papers cited in this section. Gigerenzer, Krauss, and Vitouch (2004) highlights how the
null ritual can indeed hurt research and anything that comes from it. Alas, as said at the
beginning of this chapter, virtually all contemporary research (especially in the social sciences
and hence linguistics) adopts the null ritual for statistical inference. This means, in practice,
that we should always be very sceptical of statements regarding statistical significance and or
strength of evidence when reading such literature and we should instead focus more on the
actual estimates of the estimands of interest.

Many students (and supervisors) worry that not learning how to run many different
frequentist /null-ritualistic statistical tests and regression models could make it more difficult
for you to understand previous literature, precisely because that is what most literature
uses. This is in fact a unnecessary worry: all frequentist tests are just ways to obtain a
p-value to test statistical significance and they tell you nothing else about the magnitude or
importance of an estimate; frequentist regression models function on the same premise of
using the equation of a line to estimate coefficients we've been discussing in the regression
chapters, so that the structure of model coefficients and parameters is just the same. It is
the interpretation that is different: in Bayesian regression models, you get a full posterior
probability distribution for each parameter, while in frequentist regressions you only get a
point-estimate (an estimate that is a single value). In other words, once you learn the basics
of Bayesian regression models, you can still interpret frequentist/null-ritualistic regression
models while avoiding the common pitfalls reviewed in this chapter.

29.5 Why prefer Bayesian inference?

Now that you have a better understanding of frequentist statistics and more precisely the
null ritualistic version of frequentism (or NHST) as practised by researchers, here are a few
practical and conceptual reasons for why Bayesian statistics might be more appropriate in
most research contexts.

29.5.1 Practical reasons

o Fitting frequentist models can lead to anti-conservative p-values (i.e. increased false
positive rates, called Type-I error rates: there is no effect but yet you get a significant
p-value). An interesting example of this for the non-technically inclined reader can be
found in Dobreva (2024). Frequentist regression models fitted with Im() /1mer () tend to

310

be more sensitive to small sample sizes than Bayesian models (with small sample sizes,
Bayesian models return estimates with greater uncertainty, which is a more conservative
approach).

e While very simple models will return very similar estimates whether they are frequentist
or Bayesian, in most cases more complex models won’t converge if run with frequentist
packages like Ime4, especially without adequate enough sample sizes. Bayesian regression
models always converge, while frequentist ones don’t always do.

o Frequentist regression models require as much work as Bayesian ones, although it is com-
mon practice to skip necessary steps when fitting the former, which gives the impression
of it being a quicker process. Factoring out the time needed to run Markov Chain Monte
Carlo chains in Bayesian regressions, in frequentist regressions you still have to perform
robust perspective power analyses and post-hoc model checks.

o With Bayesian models, you can reuse posterior distributions from previous work and
include that knowledge as priors into your Bayesian analysis. This feature effectively
speeds up the discovery process (getting to the real value estimate of interest faster).
You can embed previous knowledge in Bayesian models while you can’t in frequentist
ones.

29.5.2 Conceptual reasons

o Frequentist regression models cannot provide evidence for a difference between groups,
only evidence to reject the null (i.e. nil) hypothesis.

o A frequentist Confidence Interval (CI) like a 95% CI can only tell us that, if we run the
same study multiple times, 95% of the time the CI will include the real value (but we
don’t know whether the CI we got in our study is one from the 5% percent of Cls that
do not contain the real value). On the other hand, a 95% Bayesian Credible Interval
(CrI) always tells us that the real value is within a certain range, conditional on model
and data. So, frequentist models really just give you a point estimate, while Bayesian
models give you a range of values and their probability.

o With Bayesian regressions you can compare any hypothesis, not just null vs alternative.
(Although you can use information criteria with frequentist models to compare any set
of hypotheses).

o Frequentist regression models are based on an imaginary set of experiments that you
never actually carry out.

o Bayesian regression models will converge towards the true value in the long run. Fre-
quentist models do not.

311

Of course, there are merits in fitting frequentist models, for example in corporate decisions,
but you’ll still have to do a lot of work. The main conceptual difference then is that frequentist
and Bayesian regression models answer very different questions and as (knowledge-oriented)
researchers we are generally interested in questions that the latter can answer and the former
cannot.

312

Part VIII

Week 8

313

30 Binary outcomes: Bernoulli regression

Area Statistice m:

Binary outcome variables are very common in linguistics. These are categorical variable
that have two levels, e.g.:

e yes / no

o grammatical / ungrammatical

o Spanish / English

o direct object (gave the girl the book) / prepositional phrase (gave the book to the girl)
o correct / incorrect

So far you have been fitting regression models in which the outcome variable was numeric and
continuous. However, a lot of studies use binary outcome variables and it thus important to
learn how to deal with those. This is what this chapter is about.

When modelling binary outcomes, what the researcher is usually interested in is the probability
of obtaining one of the two levels. For example, in a lexical decision task one might want to
know the probability that real words were recognised as such (in other words, we are interested
in accuracy: incorrect or correct response). Let’s say there is an 80% probability of responding
correctly. So (p() stands for “probability of”):

p(correct) = 0.8
p(incorrect) = 1 — p(correct) = 0.2

You see that if you know the probability of one level (correct) you automatically know the
probability of the other level, since there are only two levels and the total probability has
to sum to 1. The distribution family for binary probabilities is the Bernoulli family. The
Bernoulli family has only one parameter, p, which is the probability of obtaining one of the
two levels (one can pick which level). With our lexical decision task example, we can write:

T€SPcorrect ™ Bernoulli (p)

p=0.8

You can read it as:

314

The probability of getting a correct response follows a Bernoulli distribution with
p = 0.8.

If you randomly sampled from Bernoulli(0.8) you would get “correct” 80% of the times and
“incorrect” 20% of the times. We can test this in R. In previous chapters we used the rnorm()
function to generate random numbers from Gaussian distributions. R doesn’t have an rbern()
function, so we have to use the rbinom() function instead. The function generates random
observations from a binomial distribution: the binomial distributions is a more general form
of the Bernoulli distribution. It has two parameters, n the number of trials and p the “success”
probability of each trial. If we code each level in the binary variable as 0 and 1, p is the
probability of getting 1 (that’s why it is called the “success” probability).

Binomial(n, p)
Think of a coin: you flip it 10 times so n = 10 (ten trials). If this is a fair coin, then p
should be 0.5: 50% of the times you get head (1) and 50% of the times you get tail (0). The
rbinom() function takes three arguments: n number of observations (maybe confusingly, not
the number of trials), size the number of trials, and p the probability of success. The following

code simulates 10 flips of a fair coin with rbinom().

Set the seed for reproducibility
set.seed(9182)

rbinom(1, 10, 0.5)

(1] 6

The output is 6, meaning 6 out of 10 flips had head (1). Note that the probability of success
p is the mean probability of success. In any one observation, you won’t necessarily get 5 of
10 with p = 0.5, but if you take many 10-trial observations, then on average you should get
pretty close to 0.5. Let’s try this:

Set the seed for reproducibility
set.seed(9182)

mean(rbinom(100, 10, 0.5))

[1] 5.08

315

Here we took 100 observations of 10 flips. On average, about 5 of 10 flips got head (it is not
precisely 5, but very close).

A Bernoulli distribution is simply a binomial distribution with a single trial. Imagine again a
lexical decision task: each word presented to the participant is one trial and in each trial there
is a probability p of getting it right (correctly identifying the type of the word). We can thus
use rbinom() with size set to 1. Let’s get 25 observations of 1 trial each.

Set the seed for reproducibility
set.seed(9182)

rbinom(25, 1, 0.8)

(1J1011110110110111111111111

For each trial, we get a 1 for correct or a 0 for incorrect. If you take the mean of the trials it
should be very close to 0.8 (with those random observations, it is 0.84). Again, p is the mean
probability of success across trials.

Now, what we are trying to do when modelling binary outcome variables is to estimate the
probability p from the data. But there is a catch: probabilities are bounded between 0 and 1
and regression models don’t work with bounded variables out of the box! Bounded probabilities
are transformed into an unbounded numeric variable. The following section explains how.

30.1 Probability and log-odds

As we have just learned, probabilities are bounded between 0 and 1 but we need something that
is not bounded because regression models don’t work with bounded numeric variables. This is
where the logit function comes in: the logit function (from “logistic unit”) is a mathematical
function that transforms probabilities into log-odds. The logit function is the quantile function
(the function that returns quantiles, the value below which a given proportion of a probability
distribution lies) of the logistic distribution. The logit function is the quantile of a logistic
function with mean 0 and standard deviation 1 (a standard logistic distribution). In R, the
logit function is qlogis (). The default mean and SD in qlogis() are 0 and 1 respectively, so
you can just input the first argument, p which is the probability you want to transform into
log-odds.

qlogis(0.2)

[1] -1.386294

316

qlogis(0.5)

(11 0

qlogis(0.8)

[1] 1.386294

Figure 30.1 shows the logit function (the quantile function of the standard logistic distribution).

The probabilities on the z-axis are transformed into log-odds on the y axis. When you fit a
regression model with a binary outcome and a Bernoulli family, the estimates of the regression
coefficients are in log-odds.

dots <- tibble(
p = seq(0.1, 0.9, by = 0.1),
log_odds = qlogis(p)

)

log_odds_p <- tibble(
p = seq(0, 1, by = 0.001),
log_odds = qlogis(p)

) h>%
ggplot(aes(p, log_odds)) +
geom_vline(xintercept = 0.5, linetype = "dashed") +
geom_vline(xintercept = 0, colour = "#8856a7", linewidth = 1) +
geom_vline(xintercept = 1, colour = "#8856a7", linewidth = 1) +
geom_hline(yintercept = 0, alpha = 0.5) +
geom_line(linewidth = 2) +
geom_point(data = dots, size = 4) +
geom_point(x = 0.5, y = 0, colour = "#8856a7", size = 4) +
annotate("text", x = 0.2, y = 3, label = "logit(p) = log-odds") +
scale_x_continuous(breaks seq(0, 1, by = 0.1), minor_breaks = NULL, limits
scale_y_continuous(breaks = seq(-6, 6, by = 1), minor_breaks = NULL) +
labs(

x = "Probability",
y = "Log-odds"

)

log_odds_p

317

c(0, 1)) +

logit(p) = log—odds

P O FP N W b OO

00 01 02 03 04 05 06 07 08 09 10
Probability

Figure 30.1: The logit function (quantile function): from probabilities to log-odds.

To go back from log-odds to probabilities, we use the inverse logit function. This is the CDF
of the standard logistic distribution. In R, you apply the inverse logit function (also called the
logistic function, because it is the CDF of the standard logistic distribution) with plogis().
As with gqnorm(), the default mean and SD are 0 and 1 respectively so you can just input the
log-odds you want to transform into probabilities as the first argument qg.

plogis(-3)

[1] 0.04742587

plogis(0)

[1] 0.5

plogis(2)

[1] 0.8807971

318

plogis(6)

[1] 0.9975274

To show that plogis is the inverse of qlogis
plogis(qlogis(0.2))

[1] 0.2

Figure 30.1 shows the inverse logit transformation of log-odds (on the z-axis) into probabilities
(on the y-axis). The inverse logit constructs the typical S-shaped curve (black thick line) of
the CDF of the standard logistic distribution. Since probabilities can’t be smaller than 0 and
greater than 1, the black line slopes in either direction and it approaches 0 and 1 on the y-axis
without ever reaching them (in mathematical terms, it’s an asymptotic line). It is helpful to
just memorise that log-odds 0 corresponds to probability 0.5 (and vice versa of course).

dots <- tibble(
p = seq(0.1, 0.9, by = 0.1),
log_odds = qlogis(p)

)

p_log_odds <- tibble(
p = seq(0, 1, by = 0.001),
log_odds = qlogis(p)

) h>%
ggplot (aes(log_odds, p)) +
geom_hline(yintercept = 0.5, linetype = "dashed") +
geom_hline(yintercept = 0, colour = "#8856a7", linewidth = 1) +
geom_hline(yintercept = 1, colour = "#8856a7", linewidth = 1) +
geom_vline(xintercept = 0, alpha = 0.5) +
geom_line(linewidth = 2) +
geom_point(data = dots, size = 4) +
geom_point(x = 0, y = 0.5, colour = "#8856a7", size = 4) +
annotate("text", x = -4, y = 0.8, label = "inv_logit(log-odds) = p") +
scale_x_continuous(breaks = seq(-6, 6, by = 1), minor_breaks = NULL, limits
scale_y_continuous(breaks = seq(0, 1, by = 0.1), minor_breaks = NULL) +
labs(

x = "Log-odds",
y "Probability"

)

p_log_odds

319

c(-6, 6)) +

=
o

o
©

o
o]

inv_logit(log—odds) = p

o
3

g
o

Probability
© o o o
N W~ Ol

©
[EEY

o
o

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Log—odds

Figure 30.2: The inverse logit function (CDF function): from log-odds to probabilities.

Logit and inverse logit functions

The logit function is the quantile function of a standard logistic distribution, used to

convert probabilities into log-odds.
The inverse logit (aka logistic) function is the CDF of the standard logistic distribution,

used to convert log-odds to probabilities.

Exercise 1

Calculate the following:

e The log-odds corresponding to p = 0.12,0.66, 0.9999.

e The probabilities corresponding to log-odds = —6,0.5, 15.

30.2 Nicaraguan Sign Language single and multi-verb predicates

To illustrate how to fit a Bernoulli model, we will use data from Brentari et al. (2024) on the
emergent Nicaraguan Sign Language (Lengua de Serias Nicaragiiense, NSL).

320

verb_org <- read_csv("data/brentari2024/verb_org.csv")

verb_org

A tibble: 630 x 6

Group Participant Object Number Agency Num_Predicates
<chr> <dbl> <chr> <chr> <chr> <chr>
1 homesign 1 book single agent multiple
2 homesign 1 book single agent multiple
3 homesign 1 book plural no_agent multiple
4 homesign 1 coin single agent single
5 homesign 1 coin plural no_agent single
6 homesign 1 coin single no_agent single
7 homesign 1 coin single no_agent multiple
8 homesign 1 lollipop single agent single
9 homesign 1 lollipop single agent single
10 homesign 1 lollipop plural no_agent single

i 620 more rows

verb_org contains information on predicates as signed by three groups (Group): home-signers
(homesign), first generation NSL signers (NSL1) and second generation NSL signers (NSL2).
Specifically, the data coded in Num_Predicates whether the predicates uttered by the signer
were single-verb predicates (single) or a multi-verb predicates (multiple). The hypothesis
of the study is that use of multi-verb predicates would increase with each generation, i.e. that
NSL1 signers would use more multi-verb predicates than home-signers and that NSL2 signers
would use more multi-verb predicates than home-signers and NSL1 signers. (For the linguis-
tic reasons behind this hypothesis, check the paper linked above). Figure 30.3 shows the
proportion of single vs multiple predicates in the three groups.

verb_org |>
ggplot (aes(Group, fill = Num_Predicates)) +

geom_bar (position = "fill") +
scale_fill_brewer(palette = "Dark2") +
labs(

y = "Proportion"
)

321

1.00

Num_Predicates

Proportion
o
(o)
o

0.00 -

homésign NéLl N§L2
Group

Figure 30.3: Proportion of single vs multiple predicates in three groups of NSL signers.

What do you notice about the type of predicates in the three groups? Does it match the
hypothesis put forward by the paper? We can calculate the proportion of multi-verb predicates
by creating a column which codes Num_Predicates with O for single and 1 for multi-verbs
predicates. This is the same dummy coding we encountered in Chapter 27 for categorical
predictors, but now we apply that to a binary outcome variable. Then you just take the mean
of the dummy column by group, to obtain the proportion of multi-verb predicates for each
group. Note that since we code multi-verb predicates with 1, taking the mean gives you the
proportion of multi-verb predicates and the proportion of single predicates is just 1 — p where
p is the proportion of multi-verb predicates.

verb_org <- verb_org |>
mutate (
Num_Pred_dum = ifelse(Num_Predicates == "multiple", 1, 0)

)

verb_org |>
group_by(Group) |>
summarise (
prop_multi = round(mean(Num_Pred_dum), 2)

)

A tibble: 3 x 2

322

Group prop_multi

<chr> <dbl>
1 NSL1 0.19
2 NSL2 0.5
3 homesign 0.36

On average, home-signers produce 36% of multi-verb predicates, first generation signers (NSL1)
19% and second generation signers (NSL2) 50%. In other words, there is a decrease in produc-
tion of multi-verb predicates from home-signers to NSL1 signers, while NSL2 signers basically
just use either single or multi-verb predicates. Most times, it is also useful to plot the propor-
tion for each participant separately. Unfortunately, this is an area were bad practices have
become standard so it is worth spending some time on this, in a new section.

30.3 Plotting proportions, percentages and accuracy data

A common (but incorrect) way of plotting proportion/percentage data (like accuracy, or the
single vs multi-verb predicates of the verb_org dataset) is to calculate the proportion of each
participant and then produce a bar chart with error bars that indicate the mean proportion
(i.e. the mean of the proportions of each participant) and the dispersion around the mean
accuracy. You might have seen something like Figure 30.4 in many papers. This type of plot
is called “bars and whiskers” because the error bars look like cat whiskers.

verb_org |>
group_by(Participant, Group) |[>
summarise (prop = sum(Num_Pred_dum) / n(), .groups = "drop") |[>
group_by (Group) |>
add_tally() |>
summarise (mean_prop = mean(prop), sd_prop = sd(prop)) [>
ggplot (aes(Group, mean_prop)) +
geom_bar (stat = "identity") +
geom_errorbar (
aes (
ymin = mean_prop - sd_prop / sqrt(46),
ymax = mean_prop + sd_prop / sqrt(46)
e
width = 0.2

323

0.5

0.4
o
203
%
[
©
(O]
£ 0.2

0.1

0.0

homesign NSL1 NSL2
Group

Figure 30.4: The bad way of plotting proportions.

THE HORROR. Alas, this is a very bad way of processing proportion data. You can learn
why in Holtz (2019).! The alternative (robust) way to plot proportion data is to show the
proportion for individual participants. To do so we can use a combination of summarise(),
geom_jitter () and stat_summary (). First, we need to compute the proportion of multi-verb
predicates by participant. The procedure is the same as calculating the proportion for the
three signer groups, but now we do it for each participant. Note that participants only have
a unique ID within group, so we need to group by participant and group (we need the group
information any way to be able to plot participants by group below). We save the output to
a new tibble verb_part.

verb_part <- verb_org [>
group_by(Participant, Group) |[>
summarise (
prop_multi = round(mean(Num_Pred_dum), 2),
.groups = "drop"

)

Now we can plot the proportions and add mean and confidence intervals using geom_jitter ()
and stat_summary (). Before proceeding, you need to install the Hmisc package. There is no
need to attach it (it is used by stat_summary () under the hood). Remember not to include the

!This StackExchange answer is also useful: https://stats.stackexchange.com/a/367889/128897.

324

https://cran.r-project.org/web/packages/Hmisc/index.html
https://stats.stackexchange.com/a/367889/128897

code for installation in your document; you need to install the package only once. After several
years of teaching, I still see a lot of students having install.packages() in their scripts.

ggplot () +
Proportion of each participant
geom_jitter(
data = verb_part,
aes(x = Group, y = prop_multi),
width = 0.1, alpha = 0.5
)+
Mean proportion by stimulus with confidence interval
stat_summary (
data = verb_org,
aes(x = Group, y = Num_Pred_dum, colour = Group),

fun.data = "mean_cl_boot", size = 0.5
)
labs(
title = "Proportion of takete responses by participant and stimulus",
caption = "Mean proportion is represented by coloured points with 957 bootstrapped Confi
x = "Stimulus",
y = "Proportion"
)+
ylim(0, 1) +
theme (legend.position = "none")

325

Proportion of takete responses by participant and stimulus

1.00

0.75 °
c
i)
§_ 0.50 ® .
o ®
o e)

e
0.25
)
0.00
homesign NSL1 NSL2
Stimulus

Mean proportion is represented by coloured points with 95% bootstrapped Confidence Intervals.

Figure 30.5: How to plot participants’ proportions and overall proportions.

In this data we don’t have many participants for group, but you can immediately appreciate
the variability between participants. You will notice something new in the code: we have spec-
ified the data inside geom_jitter () and stat_summary() instead of inside ggplot (). This is
because the two functions need different data: geom_jitter() needs the data with the pro-
portion we calculated for each participant and group; stat_summary () needs to calculate the
mean and Cls from the overall data, rather than from the proportion data we created. This
is the aspect that a lot of researchers get wrong: you should not take the mean of the partici-
pant proportions, unless all participants have exactly the same number of observations. In the
verb_org data specifically, the number of observations do indeed differ for each participant.
You can check this yourself by getting the number of observations per participant per group
with the count () function. We are also specifying the aesthetics within each geom/stat func-
tion, because while x is the same, the y differs! In stat_summary(), the fun.data argument
lets you specify the function you want to use for the summary statistics to be added. Here we
are using the mean_cl_boot function, which returns the mean proportion of Response_num
and the 95% Confidence Intervals (CIs) of that mean. The CIs are calculated using a boot-
strapping procedure (if you are interested in learning what that is, check the documentation
of smean.sd from the Hmisc package).

This also makes a nice opportunity to mention one shortcoming of the models we are fitting,
thinking a bit ahead of ourselves: the regression models we cover in Week 4 to 10 do not
account for the fact that the data comes from multiple participants and instead they just
assume that each observation in the data set is from a different participant. When you have

326

multiple observations from each participant, we call this a repeated measure design. This is a
problem because it breaks one assumption of regression models: that all the observations are
independent from each other. Of course, if they come from the same participant, they are not
independent. We won’t have time in this course to learn about the solution (i.e. hierarchical
regression models, also known as multi-level, mixed-effects, nested-effects, or random-effects
models; these are just regression models that are set up so they can account for hierarchical
grouping in the data, like multiple observations from multiple participants, or multiple pupils
from multiple classes from multiple schools), but I point you to further resources in ?@sec-
next (TBA).

30.4 Bernoulli model of NSL predicates

The hypothesis of the study is that use of multi-verb predicates would increase with each
generation. To statistically assess this hypothesis and obtain estimates of the proportion of
multiple predicates, we can fit a Bernoulli model with Num_Predicates as the outcome variable
and Group as a categorical predictor. Before we move on onto fitting the model, it is useful to
transform Num_Predicates into a factor and specify the order of the levels so that single is the
first level and multiple is the second level. Wee need this because Bernoulli models estimate
the probability (the parameter p in Bernoulli(p)) of obtaining the second level in the outcome
variable (remember, p is the probability of success, i.e. of obtaining 1 in a 0/1 coded binary
variable). The first level in the factor corresponds to 0 and the second level to 1. We want
to set this order because the hypothesis states that multi-verb predicates should increase, and
by modelling the probability of multi-verb predicates we can more straightforwardly address
the hypothesis (of course, if the probability of multi-verb predicates increases, the probability
of single-verb predicates decreases, because ¢ = 1 — p). Complete the following code to make
Num_Predicates into a factor.

verb_org <- verb_org |[>
mutate (

If you reproduce Figure 30.3 now, you will see that the order of Num_Predicates in the legend
is “single” then “multiple” and that the order of the proportions in the bar chart have flipped.

verb_org |>
ggplot (aes(Group, fill = Num_Predicates)) +

geom_bar (position = "fill") +
scale_fill_brewer(palette = "Dark2") +
labs(

327

y = "Proportion"

)

1.00 -

Num_Predicates

. single
. multiple

Proportion
o
(&)
o

0.00

homésign NéLl N§L2
Group

Figure 30.6: Proportion of single vs multiple predicates in three groups of NSL signers (repr).

Now we can move on onto modelling. Here is the mathematical formula of the model we will
fit.

MYV P, ~ Bernoulli(p;)
logit(p;) = By + B1 - NSL1, + By - NSL2,

The probability of using an multi-verb predicate follows a Bernoulli distribution with prob-
ability p, which is the only parameter. The logit function is applied to the parameter p as
discussed in Section 30.1. Functions applied to model parameters are known as link func-
tions. Bernoulli models use the logit link (i.e. the logit function). Because the logit link
returns log-odds from probabilities, the log-odds of p, rather than just the probability p, are
equal to the regression equation 5, + ;- NSL1, + B, - NSL2;. This model has three regression
coefficients: [, 81, 35. With one categorical predictor, regression models need one coefficient
for each level in the predictor: since we have three levels in Group, we need three coefficients.

328

Quiz 1
a. Which of the following statements is correct?

e (A) 1. The three coefficients are, respectively, the log-odds of MVPs in home-
signers, in NSL1 and in NSL2.

e (B) 2. The three coefficients are, respectively, the log-odds of MVPs in home-
signers, the difference between NSL1 and home-signers, and the difference
between NSL2 and home-signers.

e (C) 3. The three coefficients are, respectively, the log-odds of MVPs in home-
signers, the difference between NSL1 and home-signers, and the difference
between NSL2 and NSL1.

a. [, is the mean probability of multi-verb predicates in the home-signer group. TRUE
/ FALSE

b. The model implies three dummy variables for the Group variable. TRUE / FALSE
c. NSL1 is 0 when the group is NSL2 and 1 when it is NSL1. TRUE / FALSE

d. The mean probability of multi-verb predicates for NSL2 is inv_logit(5, + fBs).
TRUE / FALSE

Explanation

a. With default treatment contrasts, the intercept is the mean of the reference level,
while the other coeflicients are the difference of the other level and the reference.

b. It is false because 3, is the log-odd probability of multi-verb predicates in the home-
signer group.

c. It is false because the number of dummy variables is the number of levels minus one.
d. The dummy NSL1 is 0 if group is either home-signers or NSL2.

30.5 Fit the Bernoulli model with brms

We can now fit the model with brm(). The model formula has no surprises: Num_Predicates
~ Group. This looks like the formula of the model in Chapter 28: VOT_ms ~ phonation. We
are modelling Num_Predicates as a function of Group, like we modelled VOT_ms as a function
of phonation. In this model, you have to set the family to bernoulli to fit a Bernoulli model.
We also set the number of cores, seed and file as usual.

329

mvp_bm <- brm(
Num_Predicates ~ Group,
family = bernoulli,
data = verb_org,
cores = 4,
seed = 1329,
file = "cache/ch-regression-bernoulli_mvp_bm"

Let’s inspect the model summary (we will get 80% CrlIs).

summary (mvp_bm, prob = 0.8)

Family: bernoulli
Links: mu = logit
Formula: Num_Predicates ~ Group
Data: verb_org (Number of observations: 630)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error 1-80% CI u-80% CI Rhat Bulk ESS Tail ESS

Intercept -0.58 0.15 -0.77 -0.38 1.00 2441 2733
GroupNSL1 -0.88 0.22 -1.17 -0.60 1.00 2503 2532
GroupNSL2 0.56 0.21 0.30 0.83 1.00 2580 2560

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The summary informs us that we used a Bernoulli family and that the link for the mean u, i.e. p
in this model, is the logit function. The formula, data and draws parts don’t need explanation.
Since the model has only one parameter p, to which we apply the regression equation, we only
have a Regression Coefficients table, without a Further Distributional Parameters
table. Let’s focus on the regression coefficients.

fixef (mvp_bm, probs = c(0.1, 0.9)) |> round(2)

Estimate Est.Error Q10 Q90

Intercept -0.58 0.15 -0.77 -0.38
GroupNSL1 -0.88 0.22 -1.17 -0.60
GroupNSL2 0.56 0.21 0.30 0.83

330

According to the Intercept (), there is an 80% probability that the log-odds of a multi-verb
predicate are between -0.77 and -0.38 in home-signers. GroupNSL1 is /3;: the 80% Crl suggests a
difference of -1.17 to -0.6 between the log-odds of NSL1 and home-signers. Finally, GroupNSL2
(By) indicates a difference between +0.3 and +0.83 between NSL2 and home-signers, at 80%
confidence. In other words, the log-odds of multi-verb predicates is lower in NSL1 and higher
in NSL2 compared to home-signers.

It’s easier to understand the results if we convert the log-odds to probabilities. First, we need
to calculate the predicted log-odds for each group and then we can use plogis(), the inverse
logit, to transform log-odds to probabilities.

Get draws
mvp_bm_draws <- as_draws_df (mvp_bm)

Calculate predicted log-odds by group
mvp_bm_draws <- mvp_bm_draws |>
mutate (
homesign = b_Intercept,
NSL1 = b_Intercept + b_GroupNSL1,
NSL2 = b_Intercept + b_GroupNSL2,
)

Pivot to longer format
mvp_bm_draws_long <- mvp_bm_draws |>
select (homesign:NSL2) [>
pivot_longer(everything(), names_to = "Group", values_to = "log") |[>
mutate(
p = plogis(log)
)

We can now summarise the draws to get Crls and plot the posteriors.

mvp_bm_draws_long |>
group_by(Group) |>
summarise (
cri_180 = quantile2(p, 0.1) [|> round(2),
cri_u80 = quantile2(p, 0.9) [|> round(2)
)

A tibble: 3 x 3
Group cri_180 cri_u80
<chr> <dbl> <dbl>

331

1 NSL1 0.16 0.22
2 NSL2 0.45 0.54
3 homesign 0.32 0.41

The predicted probability of multi-verb predicates in home-signers is 32-41%, for NSL1 it is
16-22% and for NSL2 it is 45-54%, at 80% confidence. Based on these results, we can see
more clearly that the hypothesis of the study is not fully borne out by the data: we do not
observe an increase in probability of multi-verb predicates from home-signers to NSL1 to NSL2.
Instead, there is a decrease from home-signers to NSL1 and an increase from NSL1 to NSL2.
Moreover, the predicted probability of multi-verb predicates in NSL2, 45-54%, indicates that
NSL2 possibly use either single and multi-verb predicates with equal probability. Figure 30.7
plots the predicted posterior probabilities of multi-verb predicates.

mvp_bm_draws_long |>
mutate (Group = factor(Group, levels = c("homesign", "NSL1", "NSL2"))) |>
ggplot(aes(p, Group)) +
stat_halfeye() +
labs(x = "Probability of multi-verb predicate")

NSL2 —eene———
Q.
>
o
@) NSL1 ————
homesign ——————
0.2 0.4 0.6

Probability of multi-verb predicate

Figure 30.7: Predicted probabilities of multi-verb predicates by group as per a Bernoulli re-
gression model.

Very often, we also want to know the posterior probability of the difference between a level and
another level that is not the reference: here for example we might want to know the difference

332

between NSL1 and NSL2. It is easy: we just take the difference of the log-odds predicted
draws columns NSL1 and NSL2 in mpv_bm_draws. If we want to know the difference between the
probabilities rather than the log-odds, we use the inverse-logit-transformed predicted draws.

mvp_bm_draws <- mvp_bm_draws |>
mutate (
NSL2_NSL1_log = NSL2 - NSL1,
NSL1_homesign_p = plogis(NSL1) - plogis(homesign),
NSL2_NSL1_p = plogis(NSL2) - plogis(NSL1)
)

quantile2(mvp_bm_draws$NSL1_homesign_p, c(0.1, 0.9)) |> round(2)

q10 90
-0.22 -0.11

quantile2(mvp_bm_draws$NSL2_NSL1_log, c(0.1, 0.9)) [> round(2)

q10 90
1.17 1.73

quantile2(mvp_bm_draws$NSL2_NSL1 p, c(0.1, 0.9)) [|> round(2)

ql0 g90
0.25 0.36

The log-odds in NSL2 are 1.17-1.73 units higher than in NSL1, at 80% probability. The
probability of a multi-verb predicate is 11 to 22 percentage points lower in NSL1 than home-
signers and it is 25 to 36 percentage points higher in NSL2 than NSL1, at 80% confidence.
Note how we say percentage points and not percent. There isn’t a 25-36% increase, but the
probability increases by 25-36 units, which for probabilities expressed as percentages are called
percentage points. Mixing these things up is a common mistake, so be careful.

30.6 Reporting

We fitted a Bayesian Bernoulli regression model to assess the probability of multi-
verb predicates in NSL. The model was fitted with brms Biirkner (2017) in R R
Core Team (2025), with the default priors, four chains with 2000 iterations each,
of which 1000 for warm-up. We included group (home-signers, NSL1 and NSL2) as

333

the only predictor, which was coded with the default treatment contrasts (home-
signers as the reference level).

According to the model, there is a 32-41% probability of multi-verb predicates in
home-signers, for NSL1 it is 16-22% and for NSL2 it is 45-54%, at 80% confidence.
The results indicate that the hypothesis that the probability of multi-verb predi-
cates should increase from home-signers to NSL1 to NSL2 is not borne out. The
probability decreases by 11-22 percentage points from home-signers to NSL1, and
increases by 25-36 points from NSL1 to NSL2. Moreover, the probability of multi-
verb predicates in NSL2 indicates that single and multi-verb predicates are equally
probable in NSL2.

Spotlight: Bernoulli, binomial and logistic regression

A lot of researchers know Bernoulli models under the name “binomial” or “logistic” re-
gression. Please, note that these are exactly equivalent: they refer to a model with a
Bernoulli distribution for the outcome variable. It is just that different research traditions
call them differently.

So if somebody asks you to run a logistic regression, or if you read a paper that reports
one, what they just mean is to run a regression with a binary outcome variable and a
Bernoulli distribution!

334

31 Log-normal regression

Area Statistice m:

In Chapter 18, we talked about skewness of distributions in relation to the density plots of
reaction times. In Chapter 21, we further explained that it is the onus of the researcher
to decide on a distribution family when fitting regression models and we said that, in the
absence of more specific knowledge, the Gaussian distribution is a safe assumption to make.
Note that the choice of distribution family should be based as much as possible on theoretical
grounds (as opposed to empirical). In other words, you shouldn’t plot the variable to check
with distribution it might follow (more on this in the Important box below).

There are heuristics one can follow to pick a theoretically grounded distribution. The major
ones are listed in Section B.2, so you can refer to that section in the appendix, but in this
chapter we will focus on one type of variables and the default distribution choice: i.e. variables
that can only take on values that are positive numbers. These variables, in the absence of
more specific knowledge, can be assumed to be from a log-normal distribution.

31.1 Log-normal distribution

The log-normal distribution is a continuous probability distribution of variables that can only
be positive and not zero. It has two parameters: the mean p and the standard deviation
o. These are the same parameters of the Gaussian distribution, but the parameters of the
log-normal distribution are in logged units. The name log-normal comes from the fact that
variables that are log-normal approximate a Gaussian (aka normal) distribution when we take
the logarithm (log) of the values. In other words, the variable is assumed to be Gaussian on
the log scale, rather than on the natural scale. Mathematically, we represent the log-normal
distribution with LogNormal(p, o).

Log-normal distribution

LogNormal(u, o)

The log-normal distribution is a continuous probability distribution with a mean p and
standard deviation o, measured on the log scale.

335

Continuous variables that can only be positive (and not zero) tend to be log-normally
distributed.

Typical examples of continuous variables that can only be positive and not zero are:

o Phonetic durations (segments, words, sentences, pauses, ...).
¢ Frequencies like fO0 and formants. Speech rate.

¢ Reaction times.

I will illustrate the nature of log-normal variables using reaction times (RT) from Tucker et
al. (2019). Let’s read the data and plot RTs depending on the word type. Recall we ran a
Gaussian regression model of the data in Chapter 27.

mald <- readRDS("data/tucker2019/mald_1_1.rds")

mald |>
ggplot (aes(RT, fill = IsWord)) +
geom_density(alpha = 0.8) +
geom_rug(alpha = 0.1) +
scale_fill brewer(palette = "Dark2")

0.0020
0.0015
IsWord

2
g [rue
$ 0.0010
k5 L] Facse

0.0005

0.0000 | U111 R

0 1000 2000 3000
RT

Figure 31.1: Density plot of reaction times, by word type (real and nonce).

336

We have already observed in Chapter 27 that the distribution of RTs is right-skewed: which is,
there are more extreme values to the right of the distribution than what would be expected if
this were a Gaussian variable. This is because RTs are naturally bounded to positive numbers
only, while Gaussian variables are unbounded. A common procedure, which you will likely
encounter in the literature, is to take the logarithm of RTs (and other log-normal variables),
or simply to log them: the logarithm of a log-normal variable transforms the variable so that
it approximates a Gaussian distribution. In R, the logarithm function is simply applied with
log() (this uses the natural logarithm, which is the logarithm with base e; if you need a
refresher, see Introduction to logarithms).

mald |[>
ggplot (aes(log(RT), fill = IsWord)) +
geom_density(alpha = 0.8) +
geom_rug(alpha = 0.5) +
scale_fill_brewer(palette = "Dark2")

15
210 IsWord
% . TRUE
© . FALSE

0.5

007 7 FoL b ——

4 5 6 7 8
log(RT)

Figure 31.2: Density plot of logged RTs by word type.

Figure 31.2 shows the densities of logged RTs for real and nonce words. Note how the density
curves are less skewed now compared to Figure 31.1. You will also note that the some lower
RTs values now look more extreme than in the first figure: logging a variable compresses the
scale more at higher values and spreads the scale more at lower values, which results in the

337

https://www.mathsisfun.com/algebra/logarithms.html

reduction of right-skew, but also in making very low values look more extreme. Before moving
onto discussing what to do with outliers, an important clarification is due.

Important

Looking at a density plot is not a safe way to decide if you need to log a
variable or if a variable is log-normal.

There are cases where the density plot is a combination of multiple underlying distributions
with different means and SDs that makes it look as if it is skewed. For example, the following
code creates a mixture of three Gaussian distributions of the same variable, but coming from
three different groups, each with a slightly higher mean and SD than the first group. Fig-
ure 31.3 shows a single density curve for the data (Figure 31.3a), and the density plots for the
individual groups (Figure 31.3b). In the single density plot, we might be given the impression
that this is a log-normal variable because of the right skew, but in fact, when plotting the
density curves of the individual groups we can see that the distribution in each group is quite
symmetric (not skewed) and quite Gaussian-like.

set.seed(123)

Sample sizes
n <- 2000

Three different normal distributions
x1 <- rnorm(n, mean = 20, sd = 0.5)

x2 <- rnorm(n, mean = 21, sd 1.5)

x3 <- rnorm(n, mean = 22, sd = 3)

dat <- tibble(
x = c(x1l, x2, x3),
gr = rep(c("a”, "b", “C"), each = Il)

)

Deciding if a variable is log-normal should be based on theoretical considerations rather than
on the empirical distribution. Ask yourself, before seeing the data: is this variable continuous
and can it only take on positive values? If the answer is yes, then assuming a log-normal
distribution is safe.

31.2 Dealing with outliers

Very extreme values are generally called outliers: an outlier is a value that is more extreme
than what the distribution would indicate. The definition of outlier is quite vague and there

338

0.8

0.3

0.6

density
density
o
S~

0.1
0.2

LIEE LT —— e 00 [LRRIRRINT] e
15 20 25 30 15 20 25 30
X X

(a) Single density curve. (b) Separate density curves.

Figure 31.3: A Gaussian variable from three groups with different mean/SDs might look like
a log-normal distribution (right-skewed).

are different ways of operationalising “outlierness” (i.e. to determine if a value is an outlier).
There are also different camps as to what to do with outliers, particularly in regard to in-
clusion/exclusion criteria. I side with the camp that suggests not to exclude outliers, if they
are real outliers. In most cases, thinking about errors is a much more useful way of deciding
which values to include or exclude. For example, in our RT data there is one observation of 34
ms. The second lowest RT is 200 ms. Given the task participants had to complete, a lexical
decision task, it is unlikely that they could thoughfully answer after only 34 ms (that is a very
short time, a vowel is usually longer than that!). So we could argue that that was an error:
the participant mistakenly pressed the button before thinking about the answer.

We have a good theoretical reason to exclude that observation. We would not call this an
outlier, because it is an error. You should reserve the word outlier only for extreme observations
that are not the result of an error, misunderstanding or the like. It also very often depends
on the specific task at hand: for certain task, an RT of 5 seconds might still be acceptable,
but for others it probably means the participant was distracted. This type of observations
do not represent the process one is interested in, so they are best left out. But if there are
observations that are extreme, but not so extreme to believe that they come from errors or
other causes, then it is theoretically more sound to keep them.

Since we have established that this very low RT observation of 34 ms must be an error, let’s
drop it from the data before moving on onto modelling.

mald_filt <- mald |>
filter (RT > 34)

339

31.3 Modelling RTs with a log-normal regression

The problems arising from assuming a Gaussian distribution for RTs is visually obvious when
comparing the empirical distribution of the observed RTs with the predicted distribution from
a Gaussian model. Let’s reload the Gaussian model from Chapter 27.

rt_bm_1 <- brm(
RT ~ IsWord,
family = gaussian,
data = mald,
seed = 6725,
file = "cache/ch-regression-cat-rt_bm_1"

We can plot the empirical and predicted distribution using the pp_check() function from the
brms package. The function name stands for posterior predictive check: in other words, we are
checking how the predicted joint posterior distribution of the data looks like when compared
with the empirical distribution. The joint posterior probability distribution is simply the
probability of the outcome variable as predicted by the posterior probability distributions
of the parameters of the model. The Gaussian regression above correspond to the following
mathematical equations:

RT; ~ Gaussian(p;, o)
i = Bo + B - w;

The joint posterior distribution of the outcome RT is the Gaussian(u, o) distribution in the
model. This is based on the posterior probability of the regression coefficients f,, 5; and the
overall standard deviation ¢. Remember that inference in the context of Bayesian regression
models using MCMC is based on the MCMC draws. Each draw has sampled a value for the
model parameters. So for each draw we can reconstruct one joint posterior distribution based
on the specific parameter values of that draw. It is useful to plot the joint posterior based on
several draws, but since this computation is expensive, it is usually best to use just some and
not all the draws. There isn’t a specific number and by default pp_check() uses 10 draws. In
most cases these suffice. In the following code I set the number of draws to 50 just to illustrate
how to use the ndraws argument.

Figure 31.4 shows the output of the pp_check() function. The first argument of the function
is simply the model object, rt_bm_1. We set ndraws = 50 to use 50 random draws from the
MCMC draws to reconstruct joint posteriors. These are in light blue in the figure. The dark
blue, thicker line is the empirical density of the data, the same density you would get with
geom_density(). It is quite obvious that the reconstructed posterior densities do not match
the empirical density. Values below 500 ms are over-estimated by the model (in other words,

340

the model over-predicts the presence of lower RT values) and similarly values between 1000
and 1500 ms are over-estimated. The empirical density of the data is much more compact
around the peak of the distribution, compare to the posteriors from the model.

pp_check(rt_bm_1, ndraws = 50)

Yrep

0 1000 2000

Figure 31.4: Posterior predictive checks for a Gaussian regression model of RTs.

A common reason for the failure of the posterior probability to correctly reconstruct the
empirical distribution is the incorrect choice of the family distribution (another notable reason
is not including important predictors in the model, like in the three Gaussian groups from the
example above: a Gaussian model of that data without group as a predictor will incorrectly
estimate values). We have learned above that RT values can be assumed to be log-normal,
rather than Gaussian, because they are continuous and can only be positive.

We will proceed then with modelling RTs using a log-normal regression model. This is just a
regression model with a log-normal family as the distribution family for the outcome variable,
here RTs. Here are the model formulae:

RT; ~ LogNormal(p;, o)
ti = Bo + By - w;

¢ Reaction times RT are distributed according to a log-normal distribution with mean pu
and SD o.

341

o The mean p depends on the word type of the observation (w).

e Since we are using a log-normal distribution, p and o are on the log scale. In other
words, the log-transformation of the outcome variable is handled by the model, so you
don’t have to log RTs yourself.

The estimates of the regression coefficients 3, 8; and the o parameter will be in logged mil-
liseconds (because the RTs in the data are measured in milliseconds). The following code fits
a log-normal regression to the RT values from the filtered MALD data. We are also modelling
the effect of word type (IsWord) on RTs.

rt_bm 2 <- brm(
RT ~ IsWord,
family = lognormal,
data = mald_filt,
cores = 4,
seed = 6725,
file = "cache/ch-regression-lognormal-rt_bm_2"

Before we learn how to interpret the model summary of a log-normal regression, let’s check
the posterior predictive plot, shown in Figure 31.5. Look at how the posterior predictive
distributions match the empirical distribution much better, compared to Figure 31.4. They
are not perfect, but there is indeed much improvement with a log-normal model. The remaining
differences are probably because RTs are not specifically log-normal, and other distributions
have been proposed, like the exponential-Gaussian, or ex-Gaussian distribution. We will not
treat these alternatives here: just remember that a log-normal distribution is a good initial
assumption for continuous variables that are bounded to positive numbers.

pp_check(rt_bm_2, ndraws = 50)

342

Yrep

1000 2000 3000

Figure 31.5: Posterior predictive checks for a log-normal regression model of RTs.

31.4 Interpreting log-normal regressions

Interpretation of log-normal regression models is not that different from interpreting Gaus-
sian models, with the difference that estimates are in the log-scale. Let’s print the model
summary.

summary(rt_bm_2, prob = 0.8)

Family: lognormal
Links: mu = identity; sigma = identity
Formula: RT ~ IsWord
Data: mald_filt (Number of observations: 4999)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-80% CI u-80% CI Rhat Bulk_ESS Tail_ESS
Intercept 6.82 0.01 6.82 6.83 1.00 4019 2995
IsWordFALSE 0.11 0.01 0.10 0.12 1.00 3585 2510

343

Further Distributional Parameters:
Estimate Est.Error 1-80% CI u-80% CI Rhat Bulk_ESS Tail_ ESS
sigma 0.27 0.00 0.27 0.27 1.00 3294 2989

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

As usual, the first lines give us information about the model. The family is lognormal. The
link functions are indentity for both the mean mu and the standard deviation sigma (these
are p and o from the model formula above). You have encountered link functions in the
previous chapter, when you learned about Bernoulli models. A Bernoulli model uses the logit
link to model probabilities, which are bounded between 0 and 1. The log-normal model we
just fitted uses the identity function instead: the identity function simply returns the same
values, in other words the values are not transformed. This might look surprising because we
know that the estimates are on the log scale, not on the natural scale, so we would assume a
log link.

However, link functions are applied to model parameters, rather than on the outcome variable.
The log-transformation we discussed in log-normal models is applied to the outcome variable
directly. Because of this, the model parameters are already on the log-scale and don’t have to
be further transformed. That’s why the link for the mean and SD is the identity function. If
you look back at Chapter 22 and Chapter 24, you will see that the links are also the identity
function in Gaussian models and Gaussian regression models. This is because with Gaussian
families, the model parameters are on the original scale and are not transformed (the estimates
for the models of RTs were in milliseconds because RTs were measured in milliseconds).

The Formula, Data and Draws rows of the summary have no surprises. Let’s focus on the

Regression Coefficients table (repeated here with fixef ()).

fixef(rt_bm_2, probs = c(0.1, 0.9)) |> round(2)

Estimate Est.Error Q10 Q90
Intercept 6.82 0.01 6.82 6.83
IsWordFALSE 0.11 0.01 0.10 0.12

o Intecept is 3;: the mean log-RTs when the word is real.
o IsWordFALSE is f3;: the difference in log-RTs between nonce and real words.

You see that, apart from the fact that the estimates are about log-RTs rather than RTs in
milliseconds, the interpretation of the estimates is the same as in the Gaussian regression
model you fitted in Chapter 27. The model suggests that the log-RTs of nonce words are
0.1-0.12 higher than the log-RTs of real words.

344

31.5 Logs and ratios

Differences of logged variables, aka log differences for short, can also be interpreted by convert-
ing them to the ratio of the difference. Converting log differences to ratios is done by applied
the inverse of the logarithm function, which is the exponential function: in R, this is simply
exp(). Figure 31.6 illustrated the relationship between logs on the z-axis and ratios on the
y-axes (logs are converted to ratios with exp()).

log_exp <- tibble(
log = seq(-2, 2, by = 0.1),
ratio = exp(log),
) h>%
ggplot(aes(log, ratio)) +
geom_hline(yintercept = 1, colour = "#8856a7") +
geom_line(linewidth = 2) +
geom_point(x = 0, y = 1, colour = "#8856a7", size = 4) +
scale_x_continuous (breaks seq(-2, 2, by = 1), limits = c(-2, 2)) +
scale_y_continuous(breaks = seq(0, 7)) +
annotate("text", x = 0, y = 3, label = "ratio = exp(log)") +
labs(
x = "Logs",
y = "Ratios"

)
log_exp

345

Ratios

ratio = exp(log)

-2 -1 0 1 2
Logs

Figure 31.6: The exponential function: from logs to ratios.

Log 0 corresponds to ratio 1. Positive logs correspond to increasingly larger ratios, while
negative logs correspond to increasingly smaller ratios. Note however that a ratio can only be
positive! There are no negative ratios. Ratios can be thought of as a the number to multiply
the reference number by: if the log difference is 0, the ratio is 1 which means you multiply the
reference value by 1. If you multiply by 1, you simply get the same value: for example, if the
reference (like the model intercept) is 6 then the value resulting from the difference is also 6.
In other words, there is no difference.

Logs that are greater than 0 correspond to ratios that are greater than 1. Since we multiply
the reference value by the ratio value, positive logs correspond to greater values relative to
the reference. For example, with a baseline value of 6 and a ratio of 1.5 (approximately log
= 0.405), the value resulting from the ratio is 6 x 1.5 = 9. Ratios can also be interpreted
as percentages: a ratio of 1.5 corresponds to a 50% increase (50% of 6 is 3 and 9 = 6 + 3).
Conversely, logs that are smaller than zero corresponds to ratios that are smaller than 1, which
in turn correspond to percentage decreases: For example, with a baseline 6 and a ratio of 0.8,
there is a 20% decrease (1 — 0.8 =0.2): 6 x 0.8 = 4.8, or 6 — (6 x 0.2).

Ratios are useful with log-normal variables because the magnitude of the difference depends
on the baseline. This is similar to log-odds: if a Bernoulli model suggests an increase of 0.3
log-odds, the difference in percentage points depends on the baseline value, as illustrated by
the following code:

346

round(plogis(l + 0.3) - plogis(1l), 2)

[1] 0.05

round(plogis(2 + 0.3) - plogis(2), 2)

[1] 0.03

When the baseline log-odds is 1 (corresponding to about 73%), a 0.3 log-odd increase corre-
sponds to a 5 percentage point increase (from 73 to 78%). When the baseline is 2 (about
88%) the same increase corresponds to a 3 percentage point increase. With log estimates, the
same principle applies: for the same log difference, the difference in the original scale (like
milliseconds for RT) is greater with larger baselines.

31.6 Posterior predictions

We can plot posterior predictions as per usual, using the conditional_effect () function.
Figure 31.7 shows the output of the function. Note how RTs are plotted on the original
millisecond scale, rather than in logged milliseconds.

conditional_ effects(rt_bm_2)

347

1080

1040
|_
04
1000
960 ‘
TRUE FALSE
IsWord

Figure 31.7: Posterior predictions of RTs based on a log-normal regression model, by lexical
status.

We can also extract the draws from the model and calculate the posterior predictive draws from
them, and then plot them using ggplot2, as we have done in previous chapters. The following
code extracts and mutates the draws: remember that the draws are in logged milliseconds,
so if we want to transform these back to milliseconds, we just use the exponential function
exp(). nonce_log is the predicted log RT of nonce words, i.e. the sum of the intercept plus
the coefficient b_IsWordFALSE.

rt_bm_2 draws <- as_draws_df (rt_bm_2)

rt_bm_2 draws <- rt_bm_2_draws |>
mutate (
real_log = b_Intercept,
nonce_log = b_Intercept + b_IsWordFALSE,
real = exp(real_log),
nonce = exp(nonce_log),
nonce_real = nonce - real

Finally, we can plot the predictions, shown in Figure 31.8. We need to pivot the tibble first
with pivot_longer ().

348

rt_bm_2 draws |>
select(real:nonce) |[>
pivot_longer(real:nonce) |>
ggplot (aes(value, name)) +
stat_halfeye() +
labs(
x = "Predicted RTs (ms)", y = "Lexical status",
caption = "Point = median, thick bar = 66% CrI, thin bar = 95} CrI."
)

real -

Lexical status

nonce -

900 950 1000 1050
Predicted RTs (ms)
Point = median, thick bar = 66% Crl, thin bar = 95% Crl.

Figure 31.8: Posterior predictions of RTs in real and nonce words.

We can also get the Crls as usual.

quantile2(rt_bm_2_draws$real, probs = c(0.01, 0.9)) [|> round()

ql 990
908 925

quantile2(rt_bm_2_draws$nonce, probs = c(0.01, 0.9)) [> round()

349

ql 990
1014 1033

quantile2(rt_bm_2_draws$nonce_real, probs = c(0.01, 0.9)) |> round()

ql 990
90 117

31.7 Reporting

We fitted a Bayesian regression model with a log-normal family for the outcome
variable (reaction times, RT) using brms (Biirkner 2017) in R (R Core Team 2025).
As predictor, we entered the lexical status of the word (real or nonce), coded using
default treatment contrasts with real set as the reference level.

The model indicates that the average RT for real words is between 908-925 ms at
80% confidence (5 = 6.82, SD = 0.01). RTs for nonce words are between 90-117
ms longer than for real words (8 = 0.11, SD = 0.01), at 80% probability. Average
RTs for nonce words are predicted to be between 1014-1033 ms, at 80% confidence.

31.8 Summary

e Continuous variables that can only be positive numbers, like segment duration and
reaction times, usually follow a log-normal distribution.

o These variables can be modelled with log-normal regression models (family =
lognormal).

o Estimates in log-normal models are in logs.

o Coefficients that represent differences between levels can be transformed to ratio
differences by exponentiating the coefficient with exp().

o Predictions can be converted back to the original scale with exp() as well (for
predictions, you should always include the intercept; exponentiating difference co-
efficients alone gives you for example the ratio difference in RTs, not the predicted
RTs in milliseconds).

350

32 Model diagnostics

Area Statistice m;

In Chapter 31, you found out about posterior predictive checks with pp_check (). The function
returns a plot with the empirical distribution of the data and a number of predicted joint
distributions based on the fitted model. Ideally, if the model correctly recovers the underlying
generative process, the empirical and posterior distributions should overlap or at least be very
similar. Posterior predictive checks are one simple way of doing model diagnostics. Model
diagnostics is important, but in my opinion has been overly emphasised and it has become a
substitute of good theoretical thinking (by theoretical I mean both linguistic and statistical).
In this chapter I will introduce two other diagnostic checks you should look out for and I will
present some solutions to fix common issues with model fitting.

32.1 R and Effective Sample Size

When you print a model summary, the regression coefficients table and the further distri-
butional parameters (if present) have some extra columns we haven’t discussed yet. These
columns are the Rhat, the Bulk_ESS and Tail_ESS columns. Let’s reload the log-normal
model from Chapter 31 and print the model summary.

rt_bm_2 <- brm(
RT ~ IsWord,
family = lognormal,
data = mald_filt,
cores = 4,
seed = 6725,
file

"cache/ch-regression-lognormal-rt_bm_2"

summary (rt_bm_2)

Family: lognormal
Links: mu = identity; sigma = identity

351

Formula: RT ~ IsWord
Data: mald_filt (Number of observations: 4999)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ ESS
Intercept 6.82 0.01 6.81 6.83 1.00 4019 2995
IsWordFALSE 0.11 0.01 0.10 0.12 1.00 3585 2510

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
sigma 0.27 0.00 0.26 0.27 1.00 3294 2989

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Let’s focus on Rhat: this is a measure of convergence, called R (read “R hat”). When the
MCMC algorithm shows good convergence at the end of all chains, Ris 1 or as close to 1 as
possible. In this model, all R values are exactly 1, indicating model convergence. Note that
R doesn’t have to be precisely 1, other slightly higher values of 1 are still acceptable. brms
warns you if any R value is too high, so if you don’t see warning messages when the model has
finished fitting, you should not worry about it.

Moving onto Bulk_ESS and Tail_ESS, these are two measures of Effective Sample Size
(ESS). Since the model fit is based on a series of MCMC draws, the sample size of the draws
is the number of total MCMC iterations (4000 by default). However, these draws are not
fully independent from each other, because they are derived from the same underlying MCMC
process. This generally means that the “effective” sample size might be different, when ac-
counting for the level of dependence between the draws. The MCMC algorithm is so efficient
that in some cases the ESS is higher than the actual number of draws. brms reports two ESS
measures: bulk ESS and tail ESS. The bulk ESS focuses on the central part (the bulk) of
the posterior distribution of the parameter, while the tail ESS on the tails of the posterior
distribution (usually the lower 5% and upper 95% quantiles). A sufficient bulk ESS means that
the posterior mean/median are robust, because the MCMC algorithm has robustly explored
the typical values of the parameter. When tail ESS is sufficient, this indicates that the model
has efficiently explored rare or extreme values of the parameter. Ideally, both bulk and tail
ESS should be hight enough. There isn’t a hard cut-off but it has been suggested that a value
of 400 generally indicates efficient exploration of the parameter space. In any case, brms warns
you if ESS is too low, so as with]A%, if you don’t see a warning about low ESS, you should not
WOrTY.

352

32.2 Chain mixing

Another simple way of assessing whether a model has efficiently explored the parameter space
is to check the MCMC chains with a so-called trace plot. An MCMC trace plot is a type of
line plot which plots the value of each draw in each MCMC chain (y-axis), ordered by iteration
number (z-axis). You can see the trace plots of the parameters of the log-normal model in
Figure 32.1. When the model has efficiently explored the parameter space of a parameter, the
trace plot will look like a “hairy caterpillar”. This indicates that the chains have “mixed” well,
in other words that they independently explored the same part of the parameter space.

N il § (M =
| wl“l W "h f o 'W \ W“)1 Wl n “W V V W | =

Figure 32.1: Trace plot of model parameters.

Figure 32.2 shows what bad trace plots look like (sadly, when they are very bad they look
like squashed caterpillars, like the trace plots to the right). The red ticks below the trace
lines mark divergent transitions: these are transitions from one iteration to the next that are
considered problematic. The more divergent transitions there are, the less reliable the MCMC
exploration is. Ideally, there should be no divergent transitions, but a few (less than 1-5%)
is fine if no other warning are produced. brms warns you about divergent transitions, but
you should use your judgement in determining whether there are other underlying issues and
usually the trace plot clearly indicates if there are issues.

353

\ Wm [JW |1\ ‘M "
b ol Wy M

tttttttttttttttttt

32.3 Possible solutions

When brms gives you a warning about any of the diagnostics mentioned here, it also usually
gives you possible solutions. Note that in certain cases, using these solutions does not solve
the problem, if there are more fundamental issues with the model specification (like including
a combination of predictors that can’t be estimated by the data, or when the sample size is
very small and the model is very complex).

A common solution to convergence issues (i.e. problematic R, bulk/tail ESS or trace plots) is
to increase the number of iterations. The default number is 2000 of which 1000 for warm-up, so
you could set them to 3000 or 4000 with iter = 3000 in the brm() call. Note that increasing
the number of iterations means that the model will take longer to fit.

Another solution is to increase one or more parameters related to the MCMC algorithm:
one is the maximum tree-depth and the other is the adaptive delta. Both parameters con-
trol aspects of the physic equations used by the MCMC algorithm. The default values are
max_treedepth = 10 and adapt_delta = 0.8. If brms suggests to increase either of these pa-
rameters you can do so with control = list(max_treedepth = 15, adapt_delta = 0.9)
(note that adapt_delta must be smaller than 1). The higher these values, the longer the
model takes but the better the exploration of the MCMC algorithm should be.

32.4 Summary

Diagnostics
o Posterior predictive checks with pp_check().
« R should be 1 if the model converged fine.
o Bulk and tail Estimated Sample Size (ESS) should be high enough (> 400).

e MCMC trace plots should look like “hairy caterpillars”, indicating the chains have
“mixed” well.

355

Part IX

Week 9

356

33 Open Research

Area Resesarch methods

Chapter 17 introduced the concept of Questionable Research Practices: these are practices
that, whether intentionally or not, negatively affect the research enterprise (Simmons, Nelson,
and Simonsohn 2011; Morin 2015; Flake and Fried 2020). These, combined with theoretical
underspecification typical of most research (Devezer et al. 2021; Scheel 2022), have contributed
towards what we can call a “research crisis” (Pashler and Wagenmakers 2012; Gelman and
Loken 2014; Schooler 2014; Fanelli, Costas, and loannidis 2017; Amrhein, Trafimow, and
Greenland 2019; Starns et al. 2019; Yarkoni 2022). In response to this research crisis, or
crises, researchers have initiated a movement known as Open Research (Munafo et al. 2017;
Criiwell et al. 2019), also called Open Scholarship and Open Science (some researchers find
Open Science less inclusive, because of how loaded the term “science” is, so Open Research or
Scholarship are now preferred). Open Research is a movement that stresses the importance
of a more honest and transparent research by promoting a series of research principles and
by warning from common, although not necessarily intentional, questionable practices and
misconceptions. This chapter explains what Open Research entails.

33.1 Reliability of results

A core principle of Open Research is about reliability of results presented in research literature.
Results can be considered reliable if they meet the following criteria: reliable results are
reproducible, replicable, robust and generalisable. These criteria are determined by
the combination of two aspects of research: the data and the analysis of such data. Imagine
an independent team of researchers: they pick an existing published study and want to check
the reliability of the results presented in the study. As far as the data are concerned, they can
re-use the same data of the original study or collect new data following the same protocol of
the original study. In terms of data analysis, they can use the same analysis pipeline of the
original study or use a different method. When you combine data and analysis choice together,
you get a matrix of criteria for reliable results, as shown in Figure 33.1.

When an independent researcher takes the data of the original study, applies the same ana-
lytical pipeline and obtains the same results as reported in the original study, we say that
the results are reproducible. There is also a more specific meaning, which is computational
reproducibility, by which the same data and computer code produce the same results. If

357

Data

Same Different

Reproducible Replicable

Same

A
v
oy
©
=
<

Robust Generalisable

Different

Figure 33.1: The four criteria for reliable results, by The Turing Way (CC BY 4.0).

independent researchers use the same data collection protocol and apply the same analysis
workflow, but they collect new data and obtain the same results, we say the original results
are replicable. With the same data but a different analysis pipeline, the original results are
robust if they are the same as the one obtained with a different pipeline. Finally, with new
data and a different analysis the results are generalisable if you obtain the same results of
the original study.

Together, reproducibility, replicability, robustness and generalisability are necessary (but not
sufficient) criteria to ensure reliable results. Unfortunately, the current situation in terms of
reproducibility and replicability is dire: the level of (computational) reproducibility is low in
many fields, including linguistics (Bochynska et al. 2023) and the replicability success rates
are low. Open Science Collaboration (2015) found that, in psychology, a large portion of
replications produced weaker evidence than the original studies that were replicated. Replica-
tion success is more difficult to assess in linguistics, given the few direct replication attempts
(Kobrock and Roettger 2023). Less is known about robustness and generalisability, although
Yarkoni (2022) presents convincing arguments that we can expect a generalisability crisis as
well. Overall, we are facing several reliability crises, which are part of the wider research
crisis.

358

https://book.the-turing-way.org/reproducible-research/overview/overview-definitions

33.2 Sharing research compendia

A research compendium is collection of files, data, materials, images, computer code, anal-
ysis outputs, research notebooks, etc. of a research project. A simple practice encouraged by
Open Research advocates is to openly share a project’s research compendium so that inde-
pendent researchers can access it and re-use its components. Sharing a research compendium,
especially data, of course is intertwined with ethics and obtaining proper consent from partic-
ipants or any other source.

There are many online repositories that allow researchers to share their research compendia.
A commonly used service is the Open Science Framework: https://osf.io/. An example
of research compendium on OSF can be found here: https://osf.io/3bmcp/ (this is the
compendium of Coretta et al. (2023)). Zenodo also allows you to upload research compendia:
https://zenodo.org. There are other specialised repositories like the Tromsg Repository of
Language and Linguistics (TROLLing): https://dataverse.no/dataverse/trolling.

33.3 Pre-registration and Registered Reports

Pre-registration is the procedure by which you register your study design including analysis
pipeline on an online service before conducting the study (Lakens et al. 2024). The pre-
registration is time-stamped and can be linked in the final publication. The aim of a pre-
registration is to make the research process more transparent, since the study plan is shared
in advance (Haven and Van Grootel 2019; Kavanagh and Kapitany, n.d.; Claesen et al. 2021;
Roettger 2021).

A more involved alternative to pre-registration is a new academic article format: Registered
Reports (Chambers et al. 2015; Karhulahti 2022; Karhulahti et al. 2023; Lakens et al. 2024).
Figure 33.2 shows the entire process of the Registered Report format. Registered Reports
are peer-reviewed in two stages. The Stage 1 manuscript contains a literature review and a
methodology that details the research background and the study plan. The Stage 1 manuscript
is submitted to a journal for peer-review. If granted In Principle Acceptance, the authors carry
out the study and then complete the writing of the paper resulting in a Stage 2 manuscript.
This is peer-reviewed to check that the original protocol has been followed by the authors, and
if so the paper is accepted for publication, independent of the results.

Register Reports work for a variety of research types, from quantitative to qualitative, from
exploratory to corroboratory. Note that authors do have the chance to perform analyses that
were not planned in the Stage 1 manuscript, as long as they are clearly labelled as exploratory
or not pre-registered. There is hope that Registered Reports can positively contribute to
making research more robust and mitigate the effects of the researchers’ degrees of freedom.
Of course, they are not a one-shot solution, but just one tool among many that have been
proposed to improve the quality of research.

359

https://osf.io/
https://osf.io/3bmcp/
https://zenodo.org
https://dataverse.no/dataverse/trolling

DEVELOP COLLECT & WRITE PUBLISH

ANALYZE

ST REPORT REPORT

IDEA

Stage 2
Peer Review

Stage 1
Peer Review

Figure 33.2: The process of the Registered Report article format.

33.4 Version control systems

A version control system is software that allows users to take incremental “snapshots” of
computer files and to revert to any snapshot in time. Versioning systems are primarily
thought for programming work (developing software) but they have been increasingly adopted
in (knowledge-oriented, non-applied) research given that a lot of the research process is based
on computational aspects (managing data, analysing data with code, writing manuscripts, etc).
A commonly used version control system is git (https://git-scm.com). git allows you to track
changes in files, commit those changes into “snapshots” and also maintaining multiple branches
of the same repository. Note that git is software that runs on your computer. git repositories
can be shared and managed online with other services, like GitHub (https://github.com) or
GitLab (https://about.gitlab.com). The code and the website of this textbook are hosted on
GitHub: https://github.com/stefanocoretta/qdal.

One of the advantages of using a version control system is that it helps ensuring computational
reproducibility. Everything needed for code to be run is managed by the version control system
and independent researchers can access and clone the versioned repository and re-use the code.
git is very efficient with textual files, of the kind you would use for code, but it is less ideal with
large data files. The software Data Version Control (DVC, https://dvc.org) was developed
to more efficiently version larger files. Note that while for git repositories there are online
services like GitHub and GitLab, for DVC repositories a dedicated server does not exist so
usually “remote” DVC repositories have to be hosted on other servers.

33.5 Licences and re-use

When sharing research compendia, it is important to specify a license that explains how the
contents of the research compendium can be re-used. So just sharing the compendium does not
automatically make it “open” if it can’t be reused. Commonly used licences are the Creative
Common licences (https://creativecommons.org/share-your-work/). In particular the CC-BY
licence allows re-use of compendia provided attribution of the original authors is given. For
software more specifically, there are several licences like the MIT license and the GNU licence.

360

https://git-scm.com
https://github.com
https://about.gitlab.com
https://github.com/stefanocoretta/qdal
https://dvc.org
https://creativecommons.org/share-your-work/

When sharing compendia you should carefully think about which licence to distribute the
compendia under.

33.6 Summary

e Open Research is a movement that stresses the importance of a more honest and
transparent research.

e Core principles of Open Research are sharing research compendia under permissive
licences, ensuring computational reproducibility, and registering study plans with
pre-registrations or Registered Reports.

o Criiwell et al. (2019) is a review of Open Research principles and resources.

361

34 Regression models: multiple predictors

Area Statistice Mé

So far, we fitted regressions with a single predictor, like the following Gaussian model of
reaction times from ?@sec-regression-index:

RT; ~ Gaussian(p;, o)
i = By Wy + By - Weyg

The categorical predictor W (IsWord in the data) has two levels (TRUE and FALSE), so there
are two indexing variables: W and Wg. Each indexing variable gets its coeflicient: 5; and f,.
In most context, however, you will want to investigate the effects of more than one predictor.

Regression models can be fit with multiple predictors. Traditionally, regression models with
a single predictor were called “simple regression” and models with more than one “multiple
regression”, but it doesn’t make sense to have a specific name: they are all regression models.
In this chapter, we will discuss regression models with two categorical predictors.

34.1 Two categorical predictors

polite <- read_csv("data/winter2012/polite.csv")

fO_bm <- brm(
fOmn ~ gender + attitude,
family = gaussian,
data = polite,
cores = 4,
seed = 7123,
file = "cache/ch-regression-cat-cat_£f0_bm"

362

summary (£0_bm)

Family: gaussian
Links: mu = identity; sigma = identity
Formula: fOmn ~ gender + attitude
Data: polite (Number of observations: 212)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Regression Coefficients:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail ESS

Intercept 2565.14 4.48 246.47 263.81 1.00 4323 3184
genderM -116.07 5.28 -126.30 -105.67 1.00 4618 2936
attitudepol -14.71 5.34 -25.05 -4.40 1.00 4708 2884

Further Distributional Parameters:
Estimate Est.Error 1-95j% CI u-95J% CI Rhat Bulk_ESS Tail ESS
sigma 39.03 1.93 35.48 42.98 1.00 4604 2932

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

conditional_effects(f0_bm, "gender")

363

240
£ 200
o

160

F M
gender
conditional_ effects(f0_bm, "attitude")
260
®
< 250
£
o — 1
240 ®
inf pol

attitude

conditional_effects(f0_bm, "gender:attitude")

364

250

attitude

200
O inf
©® pol

fOmn

23

M
gender

34.2 Is the effect of attitude the same in both genders?

polite |[>
ggplot (aes(gender, fOmn, colour = attitude)) +
= position_jitterdodge(jitter.width = 0.1, seed = 2836))

geom_jitter(alpha = 0.7, position =

365

fOmn

400 -
[}
[}
®
300 - o
&
v &
Y [}
) N °
200 - N o o °
) ° [
e °
30
[]
100 - '”
b
F M
gender
Figure 34.1

366

attitude
o inf
o pol

35 Regression models: interactions

Area Statistice Mé

polite <- read_csv("data/winter2012/polite.csv")

fO0_bm_int <- brm(
fOmn ~ gender + attitude + gender:attitude,
family = gaussian,
data = polite,
cores = 4,
seed = 7123,
file = "cache/ch-regression-interaction_fO_bm_int"

summary (fO_bm_int)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: fOmn ~ gender + attitude + gender:attitude
Data: polite (Number of observations: 212)

Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;

total post-warmup draws = 4000

Regression Coefficients:

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS

Intercept 256.56 5.20 246.38 267.27 1.00
genderM -119.38 7.66 -134.08 -104.50 1.00
attitudepol -17.48 7.28 -31.76 -3.18 1.00
genderM:attitudepol 6.65 10.67 -14.20 27.47 1.00

Further Distributional Parameters:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 39.10 1.94 35.52 43.14 1.00 3834 2779

367

2632
2532
2573
2191

2950
2665
2806
2693

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

conditional_effects(f0_bm_int, "gender:attitude")

EI

200 attitude

C

<§ O inf

= ® o
150

LA

F M
gender

fO_bm_int_draws <- as_draws_df (f0_bm_int)

fO_bm_int_draws <- fO_bm_int_draws |[>

mutate (
f_inf = b_Intercept,
f_pol = b_Intercept + b_attitudepol,
m_inf = b_Intercept + b_genderM,
m_pol = b_Intercept + b_genderM + b_attitudepol + “b_genderM:attitudepol”
)
library(posterior)

This is posterior version 1.6.1

Attaching package: 'posterior'

368

The following objects are masked from 'package:stats':

mad, sd, var

The following objects are masked from 'package:base':

%in%, match

fO_bm_int_draws |>
mutate (
m_pol_inf = m_pol - m_inf
) 1>

summarise(

mean_diff = mean(m_pol_inf), sd_diff
lo_diff = quantile2(m_pol_inf, probs
) 1>

round ()

sd(m_pol_inf),
0.025), hi_diff = quantile2(m_pol_inf, probs = 0.

A tibble: 1 x 4
mean_diff sd_diff lo_diff hi_diff
<dbl> <dbl> <dbl> <dbl>
1 -11 8 =27 5

369

References

Amrhein, Valentin, David Trafimow, and Sander Greenland. 2019. “Inferential Statistics as
Descriptive Statistics: There Is No Replication Crisis If We Don’t Expect Replication.” The
American Statistician 73 (supl): 262-70. https://doi.org/10.1080/00031305.2018.1543137.

Bezeau, Scott, and Roger Graves. 2001. “Statistical Power and Effect Sizes of Clinical Neu-
ropsychology Research.” Journal of Clinical and Experimental Neuropsychology 23 (3):
399-406. https://doi.org/10.1076/jcen.23.3.399.1181.

Bochynska, Agata, Liam Keeble, Caitlin Halfacre, Joseph V. Casillas, Irys-Amélie Cham-
pagne, Kaidi Chen, Melanie Rothlisberger, Erin M. Buchanan, and Timo B. Roettger.
2023. “Reproducible Research Practices and Transparency Across Linguistics.” Glossa
Psycholinguistics 2 (1). https://doi.org/10.5070/g6011239.

Brentari, Diane, Susan Goldin-Meadow, Laura Horton, Ann Senghas, and Marie Coppola.
2024. “The Organization of Verb Meaning in Lengua de Senas Nicaragiiense (LSN): Se-
quential or Simultaneous Structures?” Glossa: A Journal of General Linguistics 9 (1).
https://doi.org/10.16995/glossa.10342.

Brugger, Peter. 2001. “From Haunted Brain to Haunted Science: A Cognitive Neuroscience
View of Paranormal and Pseudoscientific Thought.” Hauntings and Poltergeists: Multidis-
ciplinary Perspectives, 195213.

Brysbaert, Marc. 2020. “Power Considerations in Bilingualism Research: Time to Step up
Our Game.” Bilingualism: Language and Cognition 24 (5): 813818. https://doi.org/10.1
017/s1366728920000437.

Brysbaert, Marc, and Michaél Stevens. 2018. “Power Analysis and Effect Size in Mixed Effects
Models: A Tutorial.” Journal of Cognition 1 (1). https://doi.org/10.5334 /joc.10.

Biirkner, Paul-Christian. 2017. “Brms: An r Package for Bayesian Multilevel Models Using
Stan.” Journal of Statistical Software 80 (1): 128. https://doi.org/10.18637/jss.v080.i01.

. 2018. “Advanced Bayesian Multilevel Modeling with the r Package Brms.” The R

Journal 10 (1): 395411. https://doi.org/10.32614/RJ-2018-017.

. 2024. “Estimating Multivariate Models with Brms.” https://cran.r-project.org/web/
packages/brms/vignettes/brms_ multivariate.html.

Biirkner, Paul-Christian, and Matti Vuorre. 2019. “Ordinal Regression Models in Psychology:
A Tutorial” Advances in Methods and Practices in Psychological Science 2 (1): 77101.
https://doi.org/10.1177/2515245918823199.

Cameron-Faulkner, Thea, Nivedita Malik, Circle Steele, Stefano Coretta, Ludovica Serratrice,
and Elena Lieven. 2020. “A Cross-Cultural Analysis of Early Prelinguistic Gesture De-
velopment and Its Relationship to Language Development.” Child Development 92 (1):
273290. https://doi.org/10.1111/cdev.13406.

370

https://doi.org/10.1080/00031305.2018.1543137
https://doi.org/10.1076/jcen.23.3.399.1181
https://doi.org/10.5070/g6011239
https://doi.org/10.16995/glossa.10342
https://doi.org/10.1017/s1366728920000437
https://doi.org/10.1017/s1366728920000437
https://doi.org/10.5334/joc.10
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/RJ-2018-017
https://cran.r-project.org/web/packages/brms/vignettes/brms_multivariate.html
https://cran.r-project.org/web/packages/brms/vignettes/brms_multivariate.html
https://doi.org/10.1177/2515245918823199
https://doi.org/10.1111/cdev.13406

Cassidy, Scott A., Ralitza Dimova, Benjamin Giguere, Jeffrey R. Spence, and David J. Stan-
ley. 2019. “Failing Grade: 89 Per-Cent of Introduction to Psychology Textbooks That
Define/Explain Statistical Significance Do so Incorrectly.” Advances in Methods and Prac-
tices in Psychological Science. https://doi.org/10.1177/2515245919858072.

Chambers, Christopher D., Zoltan Dienes, Robert D. Mclntosh, Pia Rotshtein, and Klaus
Willmes. 2015. “Registered Reports: Realigning Incentives in Scientific Publishing.” Cor-
tex 66: A1A2. https://doi.org/10.1016/j.cortex.2015.03.022.

Charles, Sarah J., James E. Bartlett, Kyle J. Messick, Thomas J. Coleman, and Alex Uzdavines.
2019. “Researcher Degrees of Freedom in the Psychology of Religion.” The International
Journal for the Psychology of Religion 29 (4): 230245.

Claesen, Aline, Sara Gomes, Francis Tuerlinckx, and Wolf Vanpaemel. 2021. “Comparing
Dream to Reality: An Assessment of Adherence of the First Generation of Preregistered
Studies.” Royal Society Open Science 8 (10): 211037. https://doi.org/10.1098 /rs0s.211037.

Cohen, Jacob. 1962. “The Statistical Power of Abnormal-Social Psychological Research: A
Review.” The Journal of Abnormal and Social Psychology 65 (3): 145-53. https://doi.or
g/10.1037/h0045186.

Coretta, Stefano. 2019a. “An Exploratory Study of Voicing-Related Differences in Vowel
Duration as Compensatory Temporal Adjustment in Italian and Polish.” Glossa: A Journal
of General Linguistics 4 (1): 1-25. https://doi.org/10.5334/gjgl.869.

. 2019b. “Vowel Duration, Voicing Duration, and Vowel Height: Acoustic and Articu-

latory Data from Italian [Research Compendium]|.” https://doi.org/10.17605/OSF.10/XD

GF7Z.

. 2020. “Open Science in Phonetics and Phonology.” https://doi.org/10.31219/osf.io/
4dz5t.

Coretta, Stefano, and Paul-Christian Biirkner. 2025. “Bayesian Beta Regressions with Brms
in r: A Tutorial for Phoneticians.” https://doi.org/10.31219/0sf.io/f9rqg_ v1.

Coretta, Stefano, Joseph V. Casillas, Simon Roessig, Michael Franke, Byron Ahn, Ali H. Al-
Hoorie, Jalal Al-Tamimi, et al. 2023. “Multidimensional Signals and Analytic Flexibility:
Estimating Degrees of Freedom in Human-Speech Analyses.” Advances in Methods and
Practices in Psychological Science 6 (3). https://doi.org/10.1177/25152459231162567.

Coretta, Stefano, Josiane Riverin-Coutlée, Enkeleida Kapia, and Stephen Nichols. 2022.
“Northern Tosk Albanian.” Journal of the International Phonetic Association, 123. https:
//doi.org/10.1017/s0025100322000044.

Criiwell, Sophia, Johnny van Doorn, Alexander Etz, Matthew C. Makel, Hannah Moshontz,
Jesse Niebaum, Amy Orben, Sam Parsons, and Michael Schulte-Mecklenbeck. 2019. “Seven
Easy Steps to Open Science: An Annotated Reading List.” Zeitschrift Fiir Psychologie 227
(4): 237248. https://doi.org/10.1027/2151-2604 /a000387.

Cumming, Geoff. 2013. “The New Statistics: Why and How.” Psychological Science 25 (1):
729. https://doi.org/10.1177/0956797613504966.

Darwin Holmes, Andrew Gary. 2020. “Researcher Positionality: A Consideration of Its Influ-
ence and Place in Qualitative Research—a New Researcher Guide.” Shanlax International
Journal of Education 8 (4): 110. https://doi.org/10.34293 /education.v8i4.3232.

DeBruine, Lisa M., and Dale J. Barr. 2021. “Understanding Mixed-Effects Models Through

371

https://doi.org/10.1177/2515245919858072
https://doi.org/10.1016/j.cortex.2015.03.022
https://doi.org/10.1098/rsos.211037
https://doi.org/10.1037/h0045186
https://doi.org/10.1037/h0045186
https://doi.org/10.5334/gjgl.869
https://doi.org/10.17605/OSF.IO/XDGFZ
https://doi.org/10.17605/OSF.IO/XDGFZ
https://doi.org/10.31219/osf.io/4dz5t
https://doi.org/10.31219/osf.io/4dz5t
https://doi.org/10.31219/osf.io/f9rqg_v1
https://doi.org/10.1177/25152459231162567
https://doi.org/10.1017/s0025100322000044
https://doi.org/10.1017/s0025100322000044
https://doi.org/10.1027/2151-2604/a000387
https://doi.org/10.1177/0956797613504966
https://doi.org/10.34293/education.v8i4.3232

Data Simulation.” Advances in Methods and Practices in Psychological Science 4 (1).
https://doi.org/10.1177/2515245920965119.

Devezer, Berna, Danielle J. Navarro, Joachim Vandekerckhove, and Erkan Ozge Buzbas. 2021.
“The Case for Formal Methodology in Scientific Reform.” Royal Society Open Science 8
(3): rs0s.200805, 200805. https://doi.org/10.1098 /rs0s.200805.

Dienes, Zoltan. 2008. Understanding Psychology as a Science: An Introduction to Scientific
and Statistical Inference. Macmillan International Higher Education.

Dobreva, Simona. 2024. “Bayesian Vs Frequentist Approach: Same Data, Opposite Results.”
https://365datascience.com/trending/bayesian-vs-frequentist-approach/.

Dryer, Matthew S. 2008. “Descriptive Theories, Explanatory Theories, and Basic Linguistic
Theory.” In Catching Language: The Standing Challenge of Grammar Writing, edited by
Felix K. Ameka, Alan Charles Dench, and Nicholas Evans. Vol. 167. Trends in Linguistics
Studies and Monographs. Mouton De Gruyter.

Egurtzegi, Ander, and Christopher Carignan. 2020. “An Acoustic Description of Mixean
Basque.” The Journal of the Acoustical Society of America 147 (4): 27912802. https:
//doi.org/10.1121/10.0000996.

Ellis, J. Timothy, and Yair Levy. 2008. “Framework of Problem-Based Research: A Guide
for Novice Researchers on the Development of a Research-Worthy Problem.” Informing
Science: The International Journal of an Emerging Transdiscipline 11: 1733. https:
//doi.org/10.28945/438.

Fanelli, Daniele. 2010. “Do Pressures to Publish Increase Scientists’ Bias? An Empirical
Support from US States Data.” Edited by Enrico Scalas. PLoS ONE 5 (4): el0271.
https://doi.org/10.1371 /journal.pone.0010271.

— . 2012. “Negative Results Are Disappearing from Most Disciplines and Countries.”
Scientometrics 90 (3): 891-904. https://doi.org/10.1007/s11192-011-0494-7.

Fanelli, Daniele, Rodrigo Costas, and John P. A. Toannidis. 2017. “Meta-Assessment of
Bias in Science.” Proceedings of the National Academy of Sciences 114 (14): 3714-19.
https://doi.org/10.1073 /pnas.1618569114.

Fischhoff, Baruch. 1975. “Hindsight Is Not Equal to Foresight: The Effect of Outcome
Knowledge on Judgment Under Uncertainty.” Journal of Experimental Psychology: Human
Perception and Performance 1 (3): 288.

Flake, Jessica Kay, and Eiko I. Fried. 2020. “Measurement Schmeasurement: Questionable
Measurement Practices and How to Avoid Them.” Advances in Methods and Practices in
Psychological Science 3 (4): 456465. https://doi.org/10.1177/2515245920952393.

Gaeta, Laura, and Christopher R. Brydges. 2020. “An Examination of Effect Sizes and Sta-
tistical Power in Speech, Language, and Hearing Research.” Journal of Speech, Language,
and Hearing Research 63 (5): 15721580. https://doi.org/10.1044/2020_ jslhr-19-00299.

Galton, Francis. 1886. “Regression Towards Mediocrity in Hereditary Stature.” The Journal
of the Anthropological Institute of Great Britain and Ireland 15: 246. https://doi.org/10.2
307/2841583.

. 1980. “Kinship and Correlation.” The North American Review 150 (401): 419431.

Gelman, Andrew. 2005. “Analysis of Variance: Why It Is More Important Than Ever.” The
Annals of Statistics 33 (1). https://doi.org/10.1214/009053604000001048.

372

https://doi.org/10.1177/2515245920965119
https://doi.org/10.1098/rsos.200805
https://365datascience.com/trending/bayesian-vs-frequentist-approach/
https://doi.org/10.1121/10.0000996
https://doi.org/10.1121/10.0000996
https://doi.org/10.28945/438
https://doi.org/10.28945/438
https://doi.org/10.1371/journal.pone.0010271
https://doi.org/10.1007/s11192-011-0494-7
https://doi.org/10.1073/pnas.1618569114
https://doi.org/10.1177/2515245920952393
https://doi.org/10.1044/2020_jslhr-19-00299
https://doi.org/10.2307/2841583
https://doi.org/10.2307/2841583
https://doi.org/10.1214/009053604000001048

Gelman, Andrew, and Christian Hennig. 2017. “Beyond Subjective and Objective in Statis-
tics.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 180 (4):
9671033. https://doi.org/10.1111/rssa.12276.

Gelman, Andrew, Daniel Lakeland, Brian Haig, Christian Hennig, Art Owen, Robert Cousins,
Stan Young, et al. 2019. “Many Perspectives on Deborah Mayo’s “Statistical Inference as
Severe Testing: How to Get Beyond the Statistics Wars”” https://doi.org/10.48550/arX
iv.1905.08876.

Gelman, Andrew, and Eric Loken. 2014. “The Statistical Crisis in Science: Data-Dependent
Analysis. A “Garden of Forking Paths”—explains Why Many Statistically Significant Com-
parisons Don’t Hold Up.” American Scientist 102 (6): 460466.

Gelman, Andrew, Deborah Ann Nolan, and Deborah Ann Nolan. 2011. Teaching statistics: a
bag of tricks. Repr. Oxford: Oxford Univ. Press.

Gelman, Andrew, and Hal Stern. 2006. “The Difference Between “Significant” and “Not Sig-
nificant” Is Not Itself Statistically Significant.” The American Statistician 60 (4): 328331.
https://doi.org/10.1198 /000313006 X152649.

Gigerenzer, Gerd. 2004. “Mindless Statistics.” The Journal of Socio-Economics 33 (5): 587606.
https://doi.org/10.1016/j.socec.2004.09.033.

. 2018. “Statistical Rituals: The Replication Delusion and How We Got There.” Ad-
vances in Methods and Practices in Psychological Science 1 (2): 198218. https://doi.org/
10.1177/2515245918771329.

Gigerenzer, Gerd, Stefan Krauss, and Oliver Vitouch. 2004. “The Null Ritual. What You
Always Wanted to Know about Significance Testing but Were Afraid to Ask.” In, 391408.

Haven, Tamarinde L., and Dr. Leonie Van Grootel. 2019. “Preregistering Qualitative Re-
search.” Accountability in Research 26 (3): 229-44. https://doi.org/10.1080/08989621.201
9.1580147.

Heiss, Andrew. 2021. “A Guide to Modeling Proportions with Bayesian Beta and Zero-
Inflated Beta Regression Models.” https://www.andrewheiss.com/blog/2021/11/08 /beta-
regression-guide.

Holtz, Yan. 2019. “The Issue with Error Bars.” https://www.data-to-viz.com/caveat/error
__bar.html.

loannidis, John P. A. 2005. “Why Most Published Research Findings Are False” PLoS
Medicine 2 (8): e124. https://doi.org/10.1080/09332480.2019.1579573.

Jafar, Anisa J. N. 2018. “What Is Positionality and Should It Be Expressed in Quantitative
Studies?” Emergency Medicine Journal. https://doi.org/10.1136/emermed-2017-207158.

John, Leslie K., George Loewenstein, and Drazen Prelec. 2012. “Measuring the Prevalence of
Questionable Research Practices with Incentives for Truth Telling.” Psychological Science
23 (5): 524532. https://doi.org/10.1177/0956797611430953.

Karhulahti, Veli-Matti. 2022. “Registered Reports for Qualitative Research.” Nature Human
Behaviour 6 (1): 45. https://doi.org/10.1038/s41562-021-01265-8.

Karhulahti, Veli-Matti, Peter Branney, Miia Siutila, and Moin Syed. 2023. “A Primer for
Choosing, Designing and Evaluating Registered Reports for Qualitative Methods.” Open
Research Europe 3: 22. https://doi.org/10.12688 /openreseurope.15532.2.

Kavanagh, Christopher Michael, and Rohan Kapitany. n.d. “Promoting the Benefits and

373

https://doi.org/10.1111/rssa.12276
https://doi.org/10.48550/arXiv.1905.08876
https://doi.org/10.48550/arXiv.1905.08876
https://doi.org/10.1198/000313006X152649
https://doi.org/10.1016/j.socec.2004.09.033
https://doi.org/10.1177/2515245918771329
https://doi.org/10.1177/2515245918771329
https://doi.org/10.1080/08989621.2019.1580147
https://doi.org/10.1080/08989621.2019.1580147
https://www.andrewheiss.com/blog/2021/11/08/beta-regression-guide
https://www.andrewheiss.com/blog/2021/11/08/beta-regression-guide
https://www.data-to-viz.com/caveat/error_bar.html
https://www.data-to-viz.com/caveat/error_bar.html
https://doi.org/10.1080/09332480.2019.1579573
https://doi.org/10.1136/emermed-2017-207158
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1038/s41562-021-01265-8
https://doi.org/10.12688/openreseurope.15532.2

Clarifying Misconceptions about Preregistration, Preprints, and Open Science for Cognitive
Science of Religion.” https://doi.org/10.31234/osf.io/e9zs8.

Kerr, Norbert L. 1998. “HARKing: Hypothesizing After the Results Are Known.” Personality
and Social Psychology Review 2 (3): 196217. https://doi.org/10.1207 /81532795 7pspr020
3 4.

Kirby, James, and Morgan Sonderegger. 2018. “Mixed-Effects Design Analysis for Experimen-
tal Phonetics.” Journal of Phonetics 70: 7085. https://doi.org/10.1016/j.wocn.2018.05.0
05.

Kobrock, Kristina, and Timo B. Roettger. 2023. “Assessing the Replication Landscape in
Experimental Linguistics.” Glossa Psycholinguistics 2 (1). https://doi.org/10.5070/g601
1135.

Koole, Sander L, and Daniél Lakens. 2012. “Rewarding Replications: A Sure and Simple Way
to Improve Psychological Science.” Perspectives on Psychological Science 7 (6): 608614.
Kruschke, John K., and Torrin M. Liddell. 2018. “The Bayesian New Statistics: Hypothesis
Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective.”
Psychonomic Bulletin € Review 25 (1): 178206. https://doi.org/10.3758/s13423-016-

1221-4.

Kurtz, Solomon. 2023. Statistical Rethinking with Brms, Ggplot2, and the Tidyverse: Second
Edition. Version 0.4.0. https://bookdown.org/content/4857/.

Lakens, Daniél, Cristian Mesquida, Sajedeh Rasti, and Massimiliano Ditroilo. 2024. “The
Benefits of Preregistration and Registered Reports.” Evidence-Based Toxicology 2 (1). ht
tps://doi.org/10.1080/2833373x.2024.2376046.

Lorson, Alexandra, Chris Cummins, and Hannah Rohde. 2021. “Strategic Use of (Un)certainty
Expressions.” Frontiers in Communication 6 (March): 635156. https://doi.org/10.3389 /fc
omm.2021.635156.

Makel, Matthew C., Jonathan A. Plucker, and Boyd Hegarty. 2012. “Replications in Psychol-
ogy Research: How Often Do They Really Occur?” Perspectives on Psychological Science
7 (6): 537-42. https://doi.org/10.1177/1745691612460688.

Mayo, Deborah G. 2018. Statistical Inference as Severe Testing: How to Get Beyond the
Statistics Wars. 1st ed. Cambridge University Press. https://doi.org/10.1017/9781107286
184.

McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with FExamples in R
and Stan. Second edition. Chapman & Hall/CRC Texts in Statistical Science Series. Boca
Raton: CRC Press.

Morin, Olivier. 2015. “A Plea for “Shmeasurement” in the Social Sciences.” Biological Theory
10 (3): 237245. https://doi.org/10.1007/s13752-015-0217-z.

Munafo, Marcus R., Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christopher
D. Chambers, Nathalie Percie Du Sert, Uri Simonsohn, Eric-Jan Wagenmakers, Jennifer
J. Ware, and John P. A. Ioannidis. 2017. “A Manifesto for Reproducible Science.” Nature
Human Behaviour 1 (1): 21. https://doi.org/10.1038/s41562-016-0021.

Nicenboim, Bruno, Daniel J. Schad, and Shravan Vasishth. 2025. Introduction to Bayesian
Data Analysis for Cognitive Science. https://bruno.nicenboim.me/bayescogsci/.

Nickerson, Raymond S. 1998. “Confirmation Bias: A Ubiquitous Phenomenon in Many

374

https://doi.org/10.31234/osf.io/e9zs8
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1207/s15327957pspr0203_4
https://doi.org/10.1016/j.wocn.2018.05.005
https://doi.org/10.1016/j.wocn.2018.05.005
https://doi.org/10.5070/g6011135
https://doi.org/10.5070/g6011135
https://doi.org/10.3758/s13423-016-1221-4
https://doi.org/10.3758/s13423-016-1221-4
https://bookdown.org/content/4857/
https://doi.org/10.1080/2833373x.2024.2376046
https://doi.org/10.1080/2833373x.2024.2376046
https://doi.org/10.3389/fcomm.2021.635156
https://doi.org/10.3389/fcomm.2021.635156
https://doi.org/10.1177/1745691612460688
https://doi.org/10.1017/9781107286184
https://doi.org/10.1017/9781107286184
https://doi.org/10.1007/s13752-015-0217-z
https://doi.org/10.1038/s41562-016-0021
https://bruno.nicenboim.me/bayescogsci/

Guises.” Review of General Psychology 2 (2): 175220. https://doi.org/10.1037/1089-
2680.2.2.175.

Nissen, Silas Boye, Tali Magidson, Kevin Gross, and Carl T. Bergstrom. 2016. “Publication
Bias and the Canonization of False Facts.” FElife 5: €21451. https://doi.org/10.7554 /eLife.
21451.

Nosek, Brian A, and Daniél Lakens. 2014. “A Method to Increase the Credibility of Published
Results.” Social Psychology 45 (3): 137141.

Okasha, Samir. 2016. Philosophy of Science: Very Short Introduction. Oxford: Oxford
University Press. https://doi.org/10.1093/actrade/9780192802835.001.0001.

Open Science Collaboration. 2015. “Estimating the Reproducibility of Psychological Science.”
Science 349 (6251): aacd716. https://doi.org/10.1126/science.aac4716.

Pashler, Harold, and Eric-Jan Wagenmakers. 2012. “Editors’ Introduction to the Special
Section on Replicability in Psychological Science: A Crisis of Confidence?” Perspectives
on Psychological Science 7 (6): 528530. https://doi.org/10.1177/1745691612465253.

Pedersen, Eric J., David L. Miller, Gavin L. Simpson, and Noam Ross. 2019. “Hierarchical
Generalized Additive Models in Ecology: An Introduction with Mgcv.” PeerJ 7: e6876.
https://doi.org/10.7717 /peer].6876.

Perezgonzalez, Jose D. 2015. “Fisher, Neyman-Pearson or NHST? A Tutorial for Teaching
Data Testing.” Frontiers in Psychology 6 (223). https://doi.org/10.3389/fpsyg.2015.00223.

R Core Team. 2025. R: A Language and Environment for Statistical Computing [Version
4.5.0].

Roettger, Timo B. 2019. “Researcher Degrees of Freedom in Phonetic Sciences.” Laboratory
Phonology: Journal of the Association for Laboratory Phonology 10 (1): 127.

— . 2021. “Preregistration in Experimental Linguistics: Applications, Challenges, and
Limitations.” Linguistics 59 (5): 12271249. https://doi.org/10.1515/ling-2019-0048.

Roettger, Timo B., Bodo Winter, and Harald Baayen. 2019. “Emergent Data Analysis in
Phonetic Sciences: Towards Pluralism and Reproducibility.” Journal of Phonetics 73: 17.
https://doi.org/10.1016/j.wocn.2018.12.001.

Rosenberg, Alexander, and Lee Mclntyre. 2020. Philosophy of science: a contemporary intro-
duction. Fourth edition. Routledge contemporary introductions to philosophy. New York
London: Routledge.

Scheel, Anne M. 2022. “Why Most Psychological Research Findings Are Not Even Wrong.”
Infant and Child Development 31 (1): €2295. https://doi.org/10.1002/icd.2295.

Scheel, Anne M., Leonid Tiokhin, Peder M. Isager, and Daniél Lakens. 2020. “Why Hypoth-
esis Testers Should Spend Less Time Testing Hypotheses.” Perspectives on Psychological
Science 16 (4): 744-55. https://doi.org/10.1177/1745691620966795.

Schooler, Jonathan W. 2014. “Metascience Could Rescue the ‘Replication Crisis”” Nature
News 515 (7525): 9. https://doi.org/10.1038/515009a.

Sedlmeier, Peter, and Gerd Gigerenzer. 1992. “Do Studies of Statistical Power Have an Effect
on the Power of Studies?” In, 389—406. Washington: American Psychological Association.
https://doi.org/10.1037/10109-032.

Silberzahn, Raphael, Eric L. Uhlmann, Daniel P. Martin, Pasquale Anselmi, Frederik Aust,
Eli Awtrey, Stépan Bahnik, Feng Bai, Colin Bannard, and Evelina Bonnier. 2018. “Many

375

https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.7554/eLife.21451
https://doi.org/10.7554/eLife.21451
https://doi.org/10.1093/actrade/9780192802835.001.0001
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1177/1745691612465253
https://doi.org/10.7717/peerj.6876
https://doi.org/10.3389/fpsyg.2015.00223
https://doi.org/10.1515/ling-2019-0048
https://doi.org/10.1016/j.wocn.2018.12.001
https://doi.org/10.1002/icd.2295
https://doi.org/10.1177/1745691620966795
https://doi.org/10.1038/515009a
https://doi.org/10.1037/10109-032

Analysts, One Data Set: Making Transparent How Variations in Analytic Choices Affect
Results.” Advances in Methods and Practices in Psychological Science 1 (3): 337356. https:
//doi.org/10.1177/2515245917747646.

Simmons, Joseph P, Leif D Nelson, and Uri Simonsohn. 2011. “False-Positive Psychology:
Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as
Significant.” Psychological Science 22 (11): 13591366.

Simpson, Gavin L. 2018. “Fitting GAMs with Brms: Part 1.” https://fromthebottomofthehe
ap.net/2018/04/21/fitting-gams-with-brms/.

Slow Science Academy. 2010. “The Slow Science Manifesto.” http://slow-science.org.

Song, Yoonsang, Youngah Do, Arthur L. Thompson, Eileen R. Waegemaekers, and Jongbong
Lee. 2020. “Second Language Users Exhibit Shallow Morphological Processing.” Studies
in Second Language Acquisition 42 (5): 11211136. https://doi.org/10.1017/s02722631200
00170.

Séskuthy, Marton. 2021. “Evaluating Generalised Additive Mixed Modelling Strategies for
Dynamic Speech Analysis.” Journal of Phonetics 84: 101017. https://doi.org/10.1016/].
wocn.2020.101017.

. n.d. “Generalised Additive Mixed Models for Dynamic Analysis in Linguistics: A
Practical Introduction.” https://doi.org/10.48550/arXiv.1703.05339.

Starns, Jeffrey J., Andrea M. Cataldo, Caren M. Rotello, Jeffrey Annis, Andrew Aschenbren-
ner, Arndt Broder, Gregory Cox, et al. 2019. “Assessing Theoretical Conclusions with
Blinded Inference to Investigate a Potential Inference Crisis” Advances in Methods and
Practices in Psychological Science 2 (4): 335349. https://doi.org/10.1177/251524591986
9583.

Sterling, Theodore D. 1959. “Publication Decisions and Their Possible Effects on Inferences
Drawn from Tests of Significance—or Vice Versa.” Journal of the American Statistical
Association 54 (285): 3034.

Student. 1908. “The Probable Error of a Mean.” Biometrika 6 (1): 1. https://doi.org/10.230
7/2331554.

Tucker, Benjamin V, Daniel Brenner, Kyle Danielson D, Matthew C Kelley, Filip Nenadi¢,
and Michelle Sims. 2019. “The Massive Auditory Lexical Decision (MALD) Database.”
Behavior Research Methods 51 (3): 11871204. https://doi.org/10.3758/s13428-018-1056-1.

Tukey, John W. 1969. “Analyzing Data: Sanctification or Detective Work?” American Psy-
chologist 24 (2): 83-91. https://doi.org/10.1037 /h0027108.

. 1980. “We Need Both Exploratory and Confirmatory.” The American Statistician 34
(1): 23-25. https://doi.org/10.2307/2682991.

Tversky, Amos, and Daniel Kahneman. 1974. “Judgment Under Uncertainty: Heuristics
and Biases: Biases in Judgments Reveal Some Heuristics of Thinking Under Uncertainty.”
Science 185 (4157): 11241131. https://doi.org/10.1126/science.185.4157.1124.

Vasishth, Shravan, and Andrew Gelman. 2021. “How to Embrace Variation and Accept Un-
certainty in Linguistic and Psycholinguistic Data Analysis.” Linguistics 59 (5): 13111342.
https://doi.org/10.1515/1ing-2019-0051.

Veenman, Myrthe, Angelika M. Stefan, and Julia M. Haaf. 2023. “Bayesian Hierarchical
Modeling: An Introduction and Reassessment.” Behavior Research Methods 56 (5): 4600

376

https://doi.org/10.1177/2515245917747646
https://doi.org/10.1177/2515245917747646
https://fromthebottomoftheheap.net/2018/04/21/fitting-gams-with-brms/
https://fromthebottomoftheheap.net/2018/04/21/fitting-gams-with-brms/
http://slow-science.org
https://doi.org/10.1017/s0272263120000170
https://doi.org/10.1017/s0272263120000170
https://doi.org/10.1016/j.wocn.2020.101017
https://doi.org/10.1016/j.wocn.2020.101017
https://doi.org/10.48550/arXiv.1703.05339
https://doi.org/10.1177/2515245919869583
https://doi.org/10.1177/2515245919869583
https://doi.org/10.2307/2331554
https://doi.org/10.2307/2331554
https://doi.org/10.3758/s13428-018-1056-1
https://doi.org/10.1037/h0027108
https://doi.org/10.2307/2682991
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1515/ling-2019-0051

4631. https://doi.org/10.3758/s13428-023-02204-3.

Verissimo, Joao. 2021. “Analysis of Rating Scales: A Pervasive Problem in Bilingualism
Research and a Solution with Bayesian Ordinal Models.” Bilingualism: Language and
Cognition 24 (5): 842848. https://doi.org/10.1017/S1366728921000316.

Wagenmakers, Eric-Jan, Ruud Wetzels, Denny Borsboom, Han L. J. van der Maas, and Ro-
gier A. Kievit. 2012. “An Agenda for Purely Confirmatory Research.” Perspectives on
Psychological Science 7 (6): 632638. https://doi.org/10.1177/1745691612463078.

Wicherts, Jelte M., Denny Borsboom, Judith Kats, and Dylan Molenaar. 2006. “The Poor
Availability of Psychological Research Data for Reanalysis.” American Psychologist 61 (7):
726.

Wicherts, Jelte M., Coosje L. S. Veldkamp, Hilde E. M. Augusteijn, Marjan Bakker, Robbie C.
M. van Aert, and Marcel A. L. M. van Assen. 2016. “Degrees of Freedom in Planning, Run-
ning, Analyzing, and Reporting Psychological Studies: A Checklist to Avoid p-Hacking.”
Frontiers in Psychology 7. https://doi.org/10.3389/fpsyg.2016.01832.

Wickham, Hadley, Mine Cetinkaya-Rundel, and Garrett Grolemund. 2023. R for Data Science
(2e). Second edition. https://rdds.hadley.nz.

Wieling, Martijn. 2018. “Analyzing Dynamic Phonetic Data Using Generalized Additive
Mixed Modeling: A Tutorial Focusing on Articulatory Differences Between L1 and L2
Speakers of English.” Journal of Phonetics 70: 86116. https://doi.org/10.1016/j.wocn.201
8.03.002.

Winter, Bodo. 2020. Statistics for Linguists: An Introduction Using r. Routledge.

—— . n.d. “Linear Models and Linear Mixed Effects Models in r with Linguistic Applica-
tions.”

Winter, Bodo, and Paul-Christian Biirkner. 2021. “Poisson Regression for Linguists: A
Tutorial Introduction to Modelling Count Data with Brms.” Language and Linguistics
Compass 15 (11): €12439. https://doi.org/10.1111/Inc3.12439.

Winter, Bodo, and Sven Grawunder. 2012. “The Phonetic Profile of Korean Formal and
Informal Speech Registers.” Journal of Phonetics 40 (6): 808-15. https://doi.org/10.101
6/j.wocn.2012.08.006.

Yarkoni, Tal. 2022. “The Generalizability Crisis.” Behavioral and Brain Sciences 45. https:
//doi.org/10.1017/s0140525x20001685.

377

https://doi.org/10.3758/s13428-023-02204-3
https://doi.org/10.1017/S1366728921000316
https://doi.org/10.1177/1745691612463078
https://doi.org/10.3389/fpsyg.2016.01832
https://r4ds.hadley.nz
https://doi.org/10.1016/j.wocn.2018.03.002
https://doi.org/10.1016/j.wocn.2018.03.002
https://doi.org/10.1111/lnc3.12439
https://doi.org/10.1016/j.wocn.2012.08.006
https://doi.org/10.1016/j.wocn.2012.08.006
https://doi.org/10.1017/s0140525x20001685
https://doi.org/10.1017/s0140525x20001685

A Basic computer literacy

A.1 Files, folder and file extensions

Files saved on your computer live in a specific place. For example, if you download a file from
a browser (like Google Chrome, Safari or Firefox), the file is normally saved in the Download
folder. But where does the Download folder live? Usually, in your user folder! The user folder
normally is the name of your account or a name you picked when you created your computer
account. In my case, my user folder is simply called ste.

User folder

The user folder is the folder with the name of your account.

How to find your user folder name

On macOS

« Go to Finder > Preferences/Settings.

378

¢ Go to Sidebar.

e The name next to the house icon is the name of your home folder.
On Windows

o Right-click an empty area on the navigation panel in File Explorer.

e From the context menu, select the ‘Show all folders’ and your user profile will be
added as a location in the navigation bar.

Enable all extensions

Before moving on, we recommend you enable the option to show all file extensions in the
File Explorer/Finder.
Follow the instructions here:

e Windows: show extensions.

o macOS (For all files): show extensions.

So, let’s assume I download a file, let’s say big_data.csv, in the Download folder of my user
folder. Now we can represent the location of the big_data.csv file like so:

ste/
Downloads/
big_data.csv

To mark that ste and Downloads are folders, we add a final forward slash /. That simply
means “hey! I am a folder!”. big_data.csv is a file, so it doesn’t have a final /. Instead, the
file name big_data.csv has a file extension. The file extension is .csv. A file extension
marks the type of file: in this the big_data file is a .csv file, a comma separated value file
(we will see an example of what that looks like later). The name of the file is of course up to
the user, but if you change the file extension you might have trouble later reading the file, so
don’t change the file extension part yourself!

Different file types have different file extensions:

o Excel files: .x1sx.

o Plain text files: .txt.

o Images: .png, .jpg, .gif.
e Audio: .mp3, .wav.

e Video: .mp4, .mov, .avi.
o Etc..

379

https://support.microsoft.com/en-us/windows/common-file-name-extensions-in-windows-da4a4430-8e76-89c5-59f7-1cdbbc75cb01
https://support.apple.com/en-gb/guide/mac-help/mchlp2304/mac#:~:text=In%20the%20Finder%20on%20your,“Show%20all%20filename%20extensions”.

File extension

A file extension is a sequence of letters that indicates the type of a file and it’s separated
with a . from the file name.

A.1.1 File paths

Now, we can use an alternative, more succinct way, to represent the location of the
big_data.csv:

ste/Downloads/big_data.csv

This is called a file path! It’s the path through folders that lead you to the file. Folders are
separated by / and the file is marked with the extension .csv.

File path

A file path indicates the location of a file on a computer as a path through folders that
lead you to the file.

Now the million pound question: where does ste/ live on my computer??? User folders are
located in different places depending on the operating system you are using:

¢ On macOS: the user folder is in /Users/.

— You will notice that there is a forward slash also before the name of the folder. That
is because the /Users/ folder is a top folder, i.e. there are no folders further up in
the hierarchy of folders.

— This means that the full path for the big_data.csv file on a computer running
macOS would be: /Users/ste/Downloads/big_data.csv.

¢ On Windows: the user folder is in usually C:/Users/, but the drive letter might not
be C. We will use C for convenience here.

— You will notice that C is followed by a colon :. That is because C is a drive, which
contains files and folders. C: is not contained by any other folder, i.e. there are no
other folders above C: in the hierarchy of folders.

— This means that the full path for the big_data.csv file on a Windows computer
would be: C:/Users/ste/Downloads/big_data.csv.

When a file path starts from a top-most folder, we call that path the absolute file path.

380

Absolute path

An absolute path is a file path that starts with a top-most folder.

There is another type of file paths, called relative paths. A relative path is a partial file path,
relative to a specific folder. You can learn how to use relative paths in Chapter 9. Importing
files in R is very easy with the tidyverse packages. You just need to know the file type (very
often the file extension helps) and the location of the file (i.e. the file path).

381

B Regression models cheat sheet

Regression models, aka linear regression models or linear models, are a group of statistical
models based on the simple idea that we can predict an outcome variable Y based on a function
f(X). The “simplest” regression model is the formula of a line:!

y=oa+pz

where « is the intercept of the line and S the slope. The principles behind this formula
can be extended to represent virtually any other type of regression model, independent of
the nature of the outcome variable(s) (y), the predictor(s), the types of relationship between
outcome and predictor, and so on.

This means that if you master the principles of regression models, then you can
virtually fit any kind of data using regression models. You can bid farewell to classical
ANOVAs, t-tests, x2-tests, and what not. In fact, these can all be thought of as specific cases
of regression models. It just so happens that they got themselves a specific name. But the
underlying mechanics is the same. Same goes with “logistic regression”, “generalised regression
models”, “mixed-effects regression” and so on. These are all regression models, so they all
follow the same principles. And again, the fact that they got specific name is a historical

“accident”.

Understanding that these named models are in fact all regression models gives you super
powers you can use on data (Sauron would be so jealous):

One model to rule them all, one model to fit them,
One model to shrink them all, and in probability bind them;
In the Land of Inference where the distributions lie.

Ehm... perhaps this is not going to win a poetry context, but.. the message is that with a
single tool, i.e. regression models, you can go a long way!

Each of the following sections asks you about the nature of your data and/or experimental
design. By answering each, you will find out which “pieces” you need to add to your model
structure.

!Technically, the “simplest” regression model is y = f(x), but oh well...

382

B.1 Step 0: Number of outcome variables

We will get back to this step at the end of this post, since it makes things a bit more complex.

B.2 Step 1: Choose a distribution for your outcome variable

The first step towards building a regression model is to choose the family of distributions you
believe the outcome variable belongs to. You can start by answering the following question.

Question 1

Is the outcome variable continuous or discrete?

Depending on the answer, check out Section B.2.1 or Section B.2.2.

B.2.1 Continuous outcome variable

e The variable can take on any positive and negative real number, including 0: Gaussian
(aka normal) distribution.

— There are very few truly Gaussian variables, although in some cases one can speak
of “approximate” or “assumed” normality.

— This family is fitted by default in 1m(), 1me4: :1lmer () and brms: :brm(). You can
explicitly select the family with family = gaussian.

o The variable can take on any positive real number only: Log-normal distribution.

— Duration of segments, words, pauses, etc, are known to be log-normally distributed.
— Reaction times can be modelled with a log-normal distribution.

— Measurements taken in Hz (like fO, formants, centre of gravity, ...) could be consid-
ered to be log-normal.

— There are other families that could potentially be used depending on the nature of
the variable: exponential-Gaussian (reaction times), gamma, ...

Fit a log-normal model with brms: :brm(..., family = lognormal).

e The variable can take on any real number between 0 and 1, but not 0 nor 1: Beta
distribution.

— Proportions fall into this category (for example proportion of voicing within closure),
although 0 and 1 are not allowed in the beta distribution.

383

— Fit a beta model with brms: :brm(..., family = Beta).
— Check this tutorial: Coretta and Biirkner (2025).

e The variable can take on any real number between 0 and 1, including 0 or 0 and I
Zero-inflated or Zero/one-inflated beta (ZOIB) distribution.

— If the proportion data includes many Os and 1s, then this is the ideal distribution
to use. ZOIB distributions are somewhat more difficult to fit than a simple beta
distribution, so a common practice is to transform the data so that it doesn’t include
0s nor 1s (this can be achieved using different techniques, some better than others).

— Fit a ZOIB model with brms: :brm(..., family = zero_one_inflated_beta.

— Check this tutorial: Heiss (2021).

B.2.2 Discrete outcome variable

o The variable is dichotomous, i.e. it can take one of two levels: Bernoulli distribution.

— Categorical outcome variables like yes/no, correct/incorrect, voiced /voiceless, follow
this distribution.

— This family is fitted by default when you run glm(..., family = binomial), aka
“logistic regression” or “binomial regression” or with brms::brm(..., family =
bernoulli).?

e The variable is counts: Poisson distribution.

— Counts of words, segments, gestures, f0 peaks, ..

— Check out this tutorial: Winter and Biirkner (2021).

— Fit a Poisson model with brms: :brm(..., family = poisson).

— Sometimes a negative binomial distribution is preferable, if the count data is dis-
persed. Fit this model with brms: :brm(..., family = negbinomial).

e The variable is a scale: ordinal linear model.

— Likert scales and ratings, language attitude questionnaires.

— Fit ordinal regression models (aka ordinal logistic regression) with brms: :brm(. . .,
family = cumulative).

— See these tutorials: Verissimo (2021), Biirkner and Vuorre (2019).

o The variable has more than two levels, but it is not ordered: categorical (multinomial)
model.

— Fit categorical (multinomial) models with brms: :brm(. .., family = categorical).

2Note that, despite using family = binomial in glm(), under the hood a Bernoulli distribution is used.

384

— As far as I know, there isn’t a tutorial for this family, but Lorson, Cummins, and
Rohde (2021) uses categorical models. The research compendium (with data and
code) of the paper can be found here: https://osf.io/ebav9/.

— Just a quick note: if you have an outcome variable with 3 levels (A, B and C)

and you fit a categorical (multinomial) model, then P(A) = ﬁ, where the

superscripts B and C' are the estimated log-odds difference of the B and C level vs

the A level (these are the two intercepts in the model). This makes sense, because,
e

assuming each level is equally probable, ﬁ = 0.333 for all levels.

B.3 Step 2: Are there hierarchical groupings and/or repeated
measures?

The second step is to ensure that, if the data is structured hierarchically or repeated measures
were taken, this is taken into account in the model. Here is where so-called varying terms
(aka random effects, group-level effects/terms) come in (Gelman 2005). Models that include
random effects/group-level terms are called: random-effects models, mixed-effects models, hier-
archical models, nested models, multilevel models. These terms are for all intents and purposes
equivalent (it just happens that different traditions use different terms).

As an example, let’s assume you asked a number of participants to read a list of words and
each word was repeated 5 times by each participant. You then took f0 measurements from the
stressed vowel of each word, of each repetition. Now, the data has a “hierarchical” structure
to it:

o First, observations are grouped by participant (some observations belong to one partici-
pant and others to another and so on).

o Second, observations are grouped by word (some observations belong to one word and
others to another and so on).

o Third, within the observations of each word, some belong to the same participant (or,
from a different perspective, within the observations of each participant, some belong to
the same word).

The presence of “levels” within the data (whether they come from natural groupings like
participant or word, or from repeated measures) breaks one of the assumptions of regression
models: that each observation must be independent. This is why you must include varying
terms in the regression model, to account for this structure (and now you see why they are
called hierarchical and multilevel models). If you don’t include any varying term, your model
will expect that each observation is independent and hence it will underestimate variance and
return unreliable results.

385

https://osf.io/e5av9/

In the toy-example of f0 measurements, you will want to include varying terms for participant
and word. These will take care to let the model know of the structure of the data men-
tioned above. If you have other predictors in the model, you should also add them as (vary-
ing) slopes in the varying terms. For example: (question | participant) + (question |
word) (where question = statement vs question).

Here are some tutorials: Winter (n.d.), DeBruine and Barr (2021), Kirby and Sonderegger
(2018), Biirkner (2018), Veenman, Stefan, and Haaf (2023), Pedersen et al. (2019).

B.4 Step 3: Are there non-linear effects?

A typical use-case of non-linear terms is when you are dealing with time-series data or spatial
data (i.e. geographic coordinates). Generalised Additive Models (GAMs) allow you to fit
non-linear effects using so called “smooth” (or “smoother”) terms. You can fit a regression
model with smooth terms with brms: :brm(y ~ s(x)) or with mgcv:gam(y ~ s(x)), among
others. See Simpson (2018), Séskuthy (n.d.), Séskuthy (2021), Wieling (2018), Pedersen et al.
(2019).

B.5 Step 0-bis: Number of outcome variables

If you want to model just one outcome variable, you are already covered if you went through
steps 1-3. If instead your design has two or more outcome variables (for example F1 and F2,
or duration of the stressed and unstressed vowel of a word) which you want to model together,
then you want to fit a multivariate model (i.e. a model with multiple outcome variables).
The same steps we went through before can be applied to multiple outcome variables. In some
cases, you will want to use the same model structure for all the outcome variables, while in
others you might want to use a different model structure for each.

To learn more about multivariate models, I really recommend Biirkner (2024).

386

	Welcome!
	Preface
	Audience
	Justification and pedagogical background
	Book structure

	Week 1
	Research methods
	Empirical research
	Axes of research
	Research objectives

	Research context
	Research questions
	Research hypotheses
	Precision and testability

	Quantitative data analysis
	Quantitative data analysis
	The computational workflow
	Numbers have no meaning

	R basics
	Why R?
	R vs RStudio
	RStudio
	RStudio and Quarto projects
	A few important settings

	R basics
	R as a calculator
	Variables
	Functions
	String and logical vectors

	Summary

	R packages
	Install packages
	Attaching packages
	Package documentation

	Week 2
	Inference
	Uncertainty and variability
	What is statistics (and isn't)?
	Many Analysts, One Data Set: subjectivity exposed
	The ``New Statistics''
	Summary

	R scripts
	Create an R script
	Write code
	Running scripts
	Comments
	Ensuring the script runs

	Statistical variables
	Estimandum, estimands and statistical variables
	Types of variables
	Numeric vs categorical variables
	Continuous vs discrete variables

	Operationalisation

	Read data in R
	Tabular data
	Non-tabular data
	.rds files

	Get the data
	Organising your files
	Read .csv files
	Relative paths

	Read Excel sheets
	Import .rds files

	Summary measures
	Overview
	Measures of central tendency
	Mean
	Median
	Mode

	Measures of dispersion
	Minimum and maximum
	Range
	Standard deviation

	Summary table of summary measures

	Summarise data
	Summarise with summarise()
	NA: Not Available
	Grouping data with group_by()
	What the pipe!?

	Counting observations with count()

	Week 3
	Transform data
	Filter rows
	Logical operators
	The filter() function
	The %in% operator

	Mutate columns

	Quarto
	Code… and text!
	Formatting text
	Create a .qmd file
	Parts of a Quarto file
	Working directory

	How to add and run code
	Render Quarto files to HTML
	Render Quarto files to PDF
	Summary

	Visualisation principles
	Good data visualisation
	Information is (not) reliable
	Patterns are (not) noticeable
	Aesthetics (should not) get in the way
	Does (not) enable exploration
	Practical tips

	Plotting
	Base R plotting function
	Your first ggplot2 plot
	Let's add geometries
	Function arguments

	Working with aesthetics
	colour aesthetic
	alpha aesthetic

	Labels
	Summary

	More plotting
	Bar charts
	Stacked bar charts
	Filled stacked bar charts
	Faceting and panels
	Summary

	Research cycle
	Researcher's degrees of freedom
	Questionable Research Practices

	Week 4
	Probability distributions
	Probabilities
	Probability distributions
	Probability mass and density functions
	Density plots

	Working with distributions
	The Gaussian distribution
	Cumulative distribution function (CDF)
	Intervals
	Quartiles
	Percentiles

	Bayesian inference
	Gaussian models
	Gaussian models

	Fitting Gaussian models with brms
	Posterior probability distributions
	Plotting the posterior distributions
	Interpreting Credible Intervals
	Reporting

	Week 5
	Introduction to regression
	A straight line
	Back to school
	Add error

	Regression models
	Vowel duration in Italian: the data
	The model

	Interpret the model summary
	Reporting
	What's next
	Summary

	Wrangling MCMC draws
	MCMC what?
	Reproducible model fit
	Extract MCMC posterior draws
	Summary measures of the posterior draws
	Plotting posterior draws

	Week 6
	Interim summary

	Week 7
	Regression with categorical predictors
	Revisiting reaction times
	Treatment contrasts
	Model RTs by word type
	Posterior predictions
	Reporting
	Conclusion
	Summary

	More than two levels
	Mixean Basque VOT
	Treatment contrasts with three levels
	Posterior predictions
	Reporting

	Frequentist statistics, the Null Ritual and p-values
	Frequentist statistics, feuds and eugenics: a brief history
	Null Hypothesis Significance Testing
	The p-value
	The Null Ritual
	Why prefer Bayesian inference?
	Practical reasons
	Conceptual reasons

	Week 8
	Binary outcomes: Bernoulli regression
	Probability and log-odds
	Nicaraguan Sign Language single and multi-verb predicates
	Plotting proportions, percentages and accuracy data
	Bernoulli model of NSL predicates
	Fit the Bernoulli model with brms
	Reporting

	Log-normal regression
	Log-normal distribution
	Dealing with outliers
	Modelling RTs with a log-normal regression
	Interpreting log-normal regressions
	Logs and ratios
	Posterior predictions
	Reporting
	Summary

	Model diagnostics
	\hat{R} and Effective Sample Size
	Chain mixing
	Possible solutions
	Summary

	Week 9
	Open Research
	Reliability of results
	Sharing research compendia
	Pre-registration and Registered Reports
	Version control systems
	Licences and re-use
	Summary

	Regression models: multiple predictors
	Two categorical predictors
	Is the effect of attitude the same in both genders?

	Regression models: interactions

	References
	Appendices
	Basic computer literacy
	Files, folder and file extensions
	File paths

	Regression models cheat sheet
	Step 0: Number of outcome variables
	Step 1: Choose a distribution for your outcome variable
	Continuous outcome variable
	Discrete outcome variable

	Step 2: Are there hierarchical groupings and/or repeated measures?
	Step 3: Are there non-linear effects?
	Step 0-bis: Number of outcome variables

