Skip to contents

Basic usage

The main function of phonetisr is phonetise(). This function takes a character vector with IPA transcriptions and splits them into phones.

ipa <- c("pʰãkʰ", "tʰum̥", "ɛkʰɯ")

phonetise(ipa)
#> [[1]]
#> [1] "p" "ʰ" "a" "̃"  "k" "ʰ"
#> 
#> [[2]]
#> [1] "t" "ʰ" "u" "m" "̥" 
#> 
#> [[3]]
#> [1] "ɛ" "k" "ʰ" "ɯ"

The default settings will tokenise each IPA symbol separately, rather than each phone, because by default phonetisr has no concept of “phone”. IPA diacritics are then tokenised separately. The user can set diacritics = TRUE to automatically tokenise all diacritics with the preceding symbol (will not work of course for diacritics that are placed before the base symbol).

phonetise(ipa, diacritics = TRUE)
#> [[1]]
#> [1] "pʰ" "ã"  "kʰ"
#> 
#> [[2]]
#> [1] "tʰ" "u"  "m̥" 
#> 
#> [[3]]
#> [1] "ɛ"  "kʰ" "ɯ"

For the example words above, using diacritics = TRUE suffices. But what if you want more control? You can use the multi argument to specify phones that are made of multiple characters.

ph <- c("pʰ", "tʰ", "kʰ", "ã", "m̥")

phonetise(ipa, multi = ph)
#> [[1]]
#> [1] "pʰ" "ã"  "kʰ"
#> 
#> [[2]]
#> [1] "tʰ" "u"  "m̥" 
#> 
#> [[3]]
#> [1] "ɛ"  "kʰ" "ɯ"

In some cases you don’t want a list of tokenised phones, but a vector where phones are separated by a specified character (like space, or a dot). You can set split = FALSE and the default separator (a space) will be used to separate phones in the resulting string. The separator character can be specified with sep.

phonetise(ipa, multi = ph, split = FALSE, sep = ".")
#> [1] "pʰ.ã.kʰ" "tʰ.u.m̥"  "ɛ.kʰ.ɯ"

Using tibbles

A common use case of the phonetise() function is with tibble columns that have IPA transcriptions. The phonetisr package comes with kl_swades, a tibble with 195 Klingon words and their IPA transcription.

library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#>  dplyr     1.1.4      readr     2.1.5
#>  forcats   1.0.0      stringr   1.5.1
#>  ggplot2   3.5.1      tibble    3.2.1
#>  lubridate 1.9.4      tidyr     1.3.1
#>  purrr     1.0.4     
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#>  dplyr::filter() masks stats::filter()
#>  dplyr::lag()    masks stats::lag()
#>  Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data("kl_swadesh")
kl_swadesh
#> # A tibble: 195 × 4
#>       id gloss          translit ipa  
#>    <int> <chr>          <chr>    <chr>
#>  1     1 I              jIH      dʒɪx 
#>  2     2 you (singular) SoH      ʂox  
#>  3     3 he             ghaH     ɣɑx  
#>  4     4 we             maH      mɑx  
#>  5     5 you (plural)   tlhIH    tɬɪx 
#>  6     6 they           chaH     tʃɑx 
#>  7     7 this           -vam     -vɑm 
#>  8     8 that           -vetlh   -vɛtɬ
#>  9     9 here           naDev    nɑɖɛv
#> 10    10 there          pa'      pʰɑʔ 
#> # ℹ 185 more rows

Let’s phonetise the ipa column. We first want to define multi-character phones.

kl_multi <- c(
  "pʰ", "tʰ", "qʰ",
  "tɬ", "tʃ", "qχ", 
  "dʒ"
)

Then, we can use mutate() to create a new column phones with phonetised transcriptions.

kl_swadesh <- kl_swadesh |> 
  mutate(
    phones = phonetise(ipa, multi = kl_multi)
  )
#>  The following non-IPA characters were found and removed: -
#> 

kl_swadesh
#> # A tibble: 195 × 5
#>       id gloss          translit ipa   phones   
#>    <int> <chr>          <chr>    <chr> <list>   
#>  1     1 I              jIH      dʒɪx  <chr [3]>
#>  2     2 you (singular) SoH      ʂox   <chr [3]>
#>  3     3 he             ghaH     ɣɑx   <chr [3]>
#>  4     4 we             maH      mɑx   <chr [3]>
#>  5     5 you (plural)   tlhIH    tɬɪx  <chr [3]>
#>  6     6 they           chaH     tʃɑx  <chr [3]>
#>  7     7 this           -vam     -vɑm  <chr [3]>
#>  8     8 that           -vetlh   -vɛtɬ <chr [3]>
#>  9     9 here           naDev    nɑɖɛv <chr [5]>
#> 10    10 there          pa'      pʰɑʔ  <chr [3]>
#> # ℹ 185 more rows

phones is a “list” column, so kl_swadesh is “nested”: see the Nested data vignette of tidyr.

A common operation is to count the number of occurrences of each phone. We can easily do that by first “unnesting” the phones column.

kl_unnest <- kl_swadesh |> 
  unnest(phones)
kl_unnest
#> # A tibble: 651 × 5
#>       id gloss          translit ipa   phones
#>    <int> <chr>          <chr>    <chr> <chr> 
#>  1     1 I              jIH      dʒɪx  dʒ    
#>  2     1 I              jIH      dʒɪx  ɪ     
#>  3     1 I              jIH      dʒɪx  x     
#>  4     2 you (singular) SoH      ʂox   ʂ     
#>  5     2 you (singular) SoH      ʂox   o     
#>  6     2 you (singular) SoH      ʂox   x     
#>  7     3 he             ghaH     ɣɑx   ɣ     
#>  8     3 he             ghaH     ɣɑx   ɑ     
#>  9     3 he             ghaH     ɣɑx   x     
#> 10     4 we             maH      mɑx   m     
#> # ℹ 641 more rows

Then we can count each phone with count().

kl_unnest |> 
  count(phones, sort = TRUE)
#> # A tibble: 26 × 2
#>    phones     n
#>    <chr>  <int>
#>  1 ɑ         65
#>  2 o         50
#>  3 ʔ         40
#>  4 ɪ         38
#>  5 u         34
#>  6 x         31
#>  7 ɣ         30
#>  8 ɛ         29
#>  9 ʂ         28
#> 10 m         25
#> # ℹ 16 more rows

And also plot the counts.

kl_unnest |> 
  count(phones, sort = TRUE) |> 
  ggplot(aes(reorder(phones, desc(n)), n)) +
  geom_bar(stat = "identity")

Add phonetic features

The package comes with a function featurise() which takes a vector or list of phonetised words and returns a tibble with counts and phonetic features of the phones.

kl_feat <- featurise(kl_swadesh$phones)
kl_feat
#> # A tibble: 26 × 17
#>    phone count base  unicode uni_name ipa_name phon_type type  height_ipa height
#>    <chr> <int> <chr> <chr>   <chr>    <chr>    <chr>     <chr> <chr>      <chr> 
#>  1 w         8 w     U+0077  latin s… voiced … base      cons… NA         NA    
#>  2 j        10 j     U+006A  latin s… voiced … base      cons… NA         NA    
#>  3 ŋ        12 ŋ     U+014B  latin s… voiced … base      cons… NA         NA    
#>  4 tɬ       14 t     U+0074  latin s… voicele… base      cons… NA         NA    
#>  5 r        15 r     U+0072  latin s… voiced … base      cons… NA         NA    
#>  6 tʰ       16 t     U+0074  latin s… voicele… base      cons… NA         NA    
#>  7 v        17 v     U+0076  latin s… voiced … base      cons… NA         NA    
#>  8 l        19 l     U+006C  latin s… voiced … base      cons… NA         NA    
#>  9 pʰ       19 p     U+0070  latin s… voicele… base      cons… NA         NA    
#> 10 dʒ       20 d     U+0064  latin s… voiced … base      cons… NA         NA    
#> # ℹ 16 more rows
#> # ℹ 7 more variables: backness <chr>, rounding <chr>, voicing <chr>,
#> #   place <chr>, manner <chr>, lateral <lgl>, sonorant <lgl>

We can use the info for plotting.

kl_feat |> 
  ggplot(aes(reorder(phone, desc(count)), count, fill = type)) +
  geom_bar(stat = "identity")

featurise() uses the info stored in ipa_symbols, which comes with the package. Note that the phonetic features included are only based on the IPA tables: the package is not aware of language-specific features.

data("ipa_symbols")
ipa_symbols
#> # A tibble: 188 × 15
#>    IPA   unicode uni_name    ipa_name phon_type type  height_ipa height backness
#>    <chr> <chr>   <chr>       <chr>    <chr>     <chr> <chr>      <chr>  <chr>   
#>  1 a     U+0061  latin smal… open fr… base      vowel open       low    front   
#>  2 æ     U+00E6  latin smal… raised … base      vowel raised op… low_r… front   
#>  3 ɐ     U+0250  latin smal… lowered… base      vowel lowered    low_r… central 
#>  4 ɑ     U+0251  latin smal… open ba… base      vowel open       low    back    
#>  5 ɒ     U+0252  latin smal… open ba… base      vowel open       low    back    
#>  6 b     U+0062  latin smal… voiced … base      cons… NA         NA     NA      
#>  7 ʙ     U+0299  latin lett… voiced … base      cons… NA         NA     NA      
#>  8 ɓ     U+0253  latin smal… voiced … base      cons… NA         NA     NA      
#>  9 c     U+0063  latin smal… voicele… base      cons… NA         NA     NA      
#> 10 ç     U+00E7  latin smal… voicele… base      cons… NA         NA     NA      
#> # ℹ 178 more rows
#> # ℹ 6 more variables: rounding <chr>, voicing <chr>, place <chr>, manner <chr>,
#> #   lateral <lgl>, sonorant <lgl>