<- read_csv("./data/chodroff2019/ChodroffGoldenWilson2019_vot_avg.csv") %>%
vot group_by(vot.category) %>%
mutate(vot.mu_z = scale(vot.mu)) %>%
ungroup() %>%
pivot_wider(names_from = poa.broad, values_from = c(vot.mu, vot.mu_z)) %>%
mutate(vot_category = recode(vot.category, long.lag = "long lag", short.lag = "short lag"))
R gist — VOT and place of articulation
Linguistics
Gist
Read data
Mean VOT
%>%
vot plot_ly(
x = ~vot.mu_labial, y = ~vot.mu_coronal, z = ~vot.mu_dorsal, color = ~vot_category, text = ~language,
marker = list(size = 5, opacity = 0.7),
hovertemplate = paste("<b>%{text}</b>", "<br>Labial: %{x:.1r}", "<br>Coronal: %{y:.1r}", "<br>Dorsal: %{z:.1r}")
)
Mean VOT (z-scores)
%>%
vot plot_ly(
x = ~vot.mu_z_labial, y = ~vot.mu_z_coronal, z = ~vot.mu_z_dorsal, color = ~vot_category, text = ~language,
marker = list(size = 5, opacity = 0.7),
hovertemplate = paste("<b>%{text}</b>", "<br>Labial: %{x:.1r}", "<br>Coronal: %{y:.1r}", "<br>Dorsal: %{z:.1r}")
)