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1. Introduction

Warning

This is a “living” draft, meaning it is work in progress. While the code is fully
functional and usable, we will be updating the textual explanation and might
make minor changes to the code to improve clarity. Please, if using in research,
cite the version you have consulted. The version of the draft is given in the title
as “Draft vX.X” where “X” are incremental digits. See citation recommendation
at the bottom of the document.

Ultrasound Tongue Imaging (UTI) is a non-invasive technique that allows researchers
to image the shape of the tongue during speech at medium temporal resolution (30-
100 frames per second, Epstein and Stone 2005; Stone 2005). Typically, the midsagittal
contour of the tongue is imaged, although 3D systems exist (Lulich, Berkson, and Jong
2018). Recent developments in machine learning assisted image processing has enabled
faster tracking of estimated points on the tongue contour (Wrench and Balch-Tomes
2022).

Wrench and Balch-Tomes (2022) have trained a DeepLabCut (DLC) model to estimate
and track specific flesh points on the tongue contour and anatomical landmarks as
captured by UTIL. The model estimates 11 “knots” from the vallecula to the tongue tip,
plus three muscular-skeletal knots, the hyoid bone, the mandible base and the mental
spine where the short tendon attaches (see Figure 1 for a schematic illustration of the
position of the tracked knots). An advantage of DLC-tracked data over the traditional
fan-line coordinate system is that (in theory) specific (moving) flesh points are tracked
rather than simply the intersection of the tongue contour with fixed radii from the fan-
line system. This makes DLC-tracked data resemble data obtained with electromagnetic
articulography (EMA). The downside is that the tongue contour is represented by 11
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freely moving points, which can move in any direction in the midsagittal two-dimensional
space captured by UTI.

Figure 1. Schematic representation of the knots tracked by DeepLabCut. CC-BY Wrench
and Balch-Tomes (Wrench 2024).

Classical ways to analyse tongue contour data obtained from a fan-line system, like SS-
ANOVA (Davidson 2006; Chen and Lin 2011) and Generalised Additive Models using
polar coordinates (Coretta 2018b, n.d.), are not appropriate with DLC-tracked data, due
to the tongue contour “curling” onto itself along the root. This is illustrated in Figure 2:
the plot shows the DLC-tracked points (in black) of the data from a Polish speaker and
the traced tongue contours based on the points (see Section 2.1 for details on the data).
The contours clearly curl onto themselves along the root (on the left of the contour). The
red smooths represent a LOESS smooth, calculated for Y along X. This approach clearly
miscalculates the smooth for the back half of the tongue, simply because there are two
Y values for the same X value, and the procedure, in that case, returns something like
an average of the two values. Generalised Additive Models (introduced in the following
section) work on the same principle and hence would produce the same type of error.
Using polar coordinates would not solve the problem: while a fan-line system lends
itself easily to using polar coordinates (since the origin of the probe can be used to
approximate the origin of the coordinate system), this cannot be done with DLC data
because there is, in reality, no single origin in the actual tongue anatomy from which
vectors of displacement radiate, that would work for all tracked points.
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Figure 2. Illustrating tongue contours curling up along the root. The estimated smooths
in red fail to capture the curl.

Source: Article Notebook

In this tutorial, we introduce two alternative methods to analyse DLC-tracked tongue
contour data: Multivariate Generalised Additive Models (Section 2) and Multivariate
Functional Principal Component Analysis (Section 3). We will present the pros and
cons of each method in Section 4, but to summarise we are inclined to recommend
Multivariate Functional Principal Component Analysis over Multivariate Generalised
Additive Models due to the substantial computational overhead and reduced practical
utility of the latter over the former.

2. Multivariate Generalised Additive Models

Generalised Additive Models (GAMs) are an extension of generalised models that allow
flexible modelling of non-linear effects (Hastie and Tibshirani 1986; Wood 2006). GAMs
are built upon smoothing splines functions, the components of which are multiplied by
estimated coefficients to reconstruct an arbitrary time-changing curve. For a thorough
introduction to GAMs we refer the reader to (Séskuthy 2021b, 2021a; Pedersen et al.
2019; Wieling 2018). Multivariate Generalised Additive Models (MGAMs) are GAMs
with more than one outcome variable.

As mentioned in the Introduction, the data tracked by DeepLabCut consists of the
position on the horizontal (z) and vertical (y) axes of fourteen knots. In this tutorial,
we will focus on modelling the tongue contour based on the 11 knots from the vallecula
to the tongue tip. Figure 3 illustrates the reconstructed tongue contour on the basis of
the 11 knots: the shown tongue is from the offset of a vowel [o] followed by [t], uttered
by a Polish speaker (see Section 2.1).
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Figure 3. The eleven knots on the tongue contour taken from the offset of [o] followed
by [t] (Polish speaker PL04, tongue tip to the right).

Source: Article Notebook

The same data is shown in Figure 4, but in a different format. Instead of a Cartesian
coordinate system of X and Y values, the plot has knot number on the z-axis and
X/Y coordinates on the y-axis. The X/Y coordinates thus form “trajectories” along the
knots. These X/Y trajectories are the ones that can be modelled using MGAMs and
Multiple Functional Principal Component Analysis (MFPCA): in both cases, the X/Y
trajectories are modelled as two variables changing along knot number. In this section,
we will illustrate GAMs applied to the X/Y trajectories along the knots and how we can
reconstruct the tongue contour from the modelled trajectories. We will use data from
two case studies of coarticulation: vowel consonant (VC) coarticulation based on C place
in Italian and Polish, and consonantal articulation of plain vs emphatic consonants in
Lebanese Arabic.
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Figure 4. The horizontal and vertical positions of the elevel knots (same data as Fig-
ure 3).

Source: Article Notebook

2.1. VC coarticulation

The data of the first case study, Coretta (2018a), comes from Coretta (2020b) and have
been discussed in Coretta (2020a) (the analysis concerned the position of the tongue
root during the duration of vowels followed by voiceless or voiced stops; in this paper
we focus on tongue contours at the vowel offset). The materials are /pVCV/ words
embedded in a frame sentence (Dico X lentamente ‘I say X slowly’ in Italian and Mdwie
X teraz ‘I say X now’ in Polish). In the /pVCV/ words, C was /t, d, k, / and V was /a,
0, u/ (in each word, the two vowels where identical, so for example pata, poto, putu). The
data analysed here is from 9 speakers of Italian and 6 speakers of Polish (other speakers
were not included due to the difficulty in processing their data with DeepLabCut).

Ultrasound tongue imaging was obtained with the set up by Articulate Assistant Ad-
vanced™ (AAA, Ltd 2011). Spline data was extracted using a custom DeepLabCut
(DLC) model developed by Wrench and Balch-Tomes (2022). When exporting from
AAA™ the data was rotated based on the bite plane, obtained with the imaging of
a bite plate (Scobbie et al. 2011), so that the bite plane is horizontal: this allows for
a common coordinate system where vertical and horizontal movement are comparable
across speakers. Once the DLC data was imported in R, we manually removed tracking
errors and we calculated z-scores within each speaker (the difference between the value
and the mean, divided by the standard deviation). These steps are documented in the
paper’s notebook Prepare data.

The following code chunk reads the filtered data. A sample of the data is shown in
Table 1. Figure 5 shows the tongue contours for each individual speaker. It is possible
to notice clusters of different contours, related to each of the vowels /a, o, u/. Figure 6
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zooms in on PL04 (Polish): the contours of each vowel are coloured separately, and two
panels separate tongue contours taken at the offset of vowels followed by coronal (/t,
d/) and velar stops (/k, /). Crucially, the variation in tongue shape at vowel offset (or
closure onset) across vowels contexts is higher in the coronal than in the velar contexts.
This is not surprising, giving the greater involvement of the tongue body and dorsum
(the relevant articulators of vowel production) in velar than in coronal stops.

dlc_voff f <- readRDS("data/coretta2018/dlc_voff f.rds")

Source: Article Notebook

Table 1. A sample of the VC coarticulation data from Coretta (2018a).

speaker word X Y knot knot_ label
it01 pugu -55.2105 -44.1224 0 Vallecula
it01 pugu -60.6994 -31.3486 1 Root_ 1
it01 pugu -65.1434 -17.7311 2 Root_2
it01 pugu -63.6757  -4.2022 3 Body 1
it01 pugu -57.2505 7.8483 4 Body_ 2
it01 pugu -44.9086 13.3162 5 Dorsum_ 1

Source: Article Notebook
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Figure 5. Tongue contours of 9 Italian speakers and6 Polish speakers, taken from the
offset of the first vowel in /pCVCV/ target words.

Source: Article Notebook
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Figure 6. Tongue contours of PL04 (Polish) taken from the offset of vowels followed by
coronal or velar stops. Tip is on the right.

Source: Article Notebook

We can now run a multivariate GAM to model the tongue contours. A multivariate
GAM can be fitted by providing model formulae for each outcome variable (in our
case, X_z and Y_z) in a list. For example 1list(y ~ s(x), w ~ s(x)) would instruct
mgcv: :gam() to fit a bivariate GAM with the two outcome variables y and w. The
required family is mvn for “multivariate normal”: mvn(d = 2) indicates a bivariate family
(a multivariate family with two dimensions, i.e. two outcome variables). In the model
below, we are fitting a multivariate GAM to the z-scored X and Y coordinates. For both
outcome variables, we include a smooth over knot (s(knot, ...)) with a by variable
vow_place_lang: this variable is built from an interaction of vowel, place and language.*
We set k to 5: this will usually be sufficient for X/Y coordinates of tongue contours,
since they are by nature not very “wiggly” (which would require a higher k). We also
include a factor smooth over knot for speaker (the equivalent of a non-linear random
effect) with s(knot, speaker, ...): since language is a between-speaker variable, we
use vow_place as the by variable (vow_place is the interaction of vowel and place).

library(mgcv)

voff gam <- gam(
list(
X_z ~ vow_place_lang +
s(knot, by = vow_place_lang, k = 5) +
s(knot, speaker, by = vow_place, bs = "fs", m = 1),
Y z ~ vow_place_lang +

INote that interactions between categorical variables in the classical sense are not possible in GAMs. Instead,
one can approximate interactions by creating an “interaction variable”, which is simply a variable where the
values of the interacting variables are pasted together.
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s(knot, by = vow_place_lang, k = 5) +
s(knot, speaker, by = vow_place, bs = "fs", m = 1)
U
data = dlc_voff f,
family = mvn(d = 2)
)

Source: Article Notebook

The model summary is not particular insightful. What we are normally interested in
is the reconstructed tongue contours and in which locations they are similar of differ-
ent across conditions. To the best of our knowledge, there isn’t a straightforward way
to compute sensible measures of comparison, given the multidimensional nature of the
model (i.e., only one or the other outcome can be inspected at a time; moreover, dif-
ference smooths, like in Séskuthy (2021b) and Wieling (2018), represent the difference
of the sum of the outcome variables, rather than each outcome separately, Michele
Gubian pers. comm.) We thus recommend to plot the predicted tongue contours and
base any further inference on impressionistic observations on such predicted contours.
Alas, there is also no straightforward way to plot predicted tongue contours, but to
extract the predictions following a step-by-step procedure, like the one illustrated in
the following paragraphs.

First off, one has to create a grid of predictor values to obtain predictions for. We do
this with expand_grid() in the following code chunk. We start with unique values of
speaker, vow_place and knot (rather than just using integers for the knots, we predict
along increments of 0.1 from 0 to 10 for a more refined tongue contour). We then create
the required column vow_place_lang by appending the language name based on the
speaker ID. Note that all variables included as predictors in the model must be included
in the prediction grid.

# Create a grid of values to predict for
frame_voff <- expand_grid(
# All the speakers
speaker = unique(dlc_voff_ f$speaker),
# All vowel/place combinations
vow_place = unique(dlc_voff_ f$vow_place),
# Knots from O to 10 by increments of 0.1
# This gives us greater resolution along the tongue contour than just using 10 knots
knot = seq(0, 10, by = 0.1)
) 1>
mutate (
vow_place_lang = case_when(
str_detect(speaker, "it") ~ pasteO(vow_place, ".Italian"),
str_detect(speaker, "pl") ~ pasteO(vow_place, ".Polish")
)

Source: Article Notebook

With the prediction grid frame_voff we can now extract predictions from the model
voff_gam with predict (). This function requires the GAM model object (voff_gam)
and the prediction grid (frame_off). We also obtain the standard error of the prediction
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which we will use to calculate Confidence Intervals in the next step. Since we have used
factor smooths for speaker, we now have to manually exclude these smooths from the
prediction to obtain a “population” level prediction. We do this by listing the smooths to
be removed in excl: note that the smooths must be named as they are in the summary
of the model, so always check the summary to ensure you list all of the factor smooths.
Finally, we rename the columns with the name of the outcome variables.

# List of factor smooths, to be excluded from prediction
excl <- c(
"s(knot,speaker) :vow_placea.coronal",
"s(knot,speaker) :vow_placeo.coronal",
"s(knot,speaker) :vow_placeu.coronal",
"s(knot,speaker) :vow_placea.velar",
"s(knot,speaker) :vow_placeo.velar",
"s(knot,speaker) :vow_placeu.velar",
"s.1(knot,speaker) :vow_placea.coronal",
s.1(knot,speaker) :vow_placeo.coronal",
s.1(knot,speaker) :vow_placeu.coronal",
"s.1(knot,speaker) :vow_placea.velar",
s.1(knot,speaker) :vow_placeo.velar",
s.1(knot,speaker) :vow_placeu.velar"

# Get prediction from model voff_gam

voff_gam p <- predict(voff gam, frame voff, se.fit = TRUE, exclude = excl)
as.data.frame() |>
as_tibble()

# Rename columns
colnames(voff_gam p) <- c("X", "Y", "X se", "Y_se")

Source: Article Notebook

Now we have to join the prediction in voff_gam_p with the prediction frame, so that we
have all the predictor values in the same data frame. We do so here with bind_cols()
from the dplyr package. Note that voff_gam p contains predictions for each level of
the factor smooths, despite these being excluded from prediction. If you inspect the
predictions for different speakers, you will find that they are the same for the same
levels of vow_place_lang: this is because the effects of the factor smooths were removed,
so speaker has no effect on the predicted values. This means that you can pick any
Italian and Polish speaker in the predicted data frame. We do so by filtering with
filter(speaker %in’ c("it01", "pl02")), but any other speaker would lead to the
same output. We also calculate the lower and upper limits of 95% Confidence intervals
(CI) for each coordinate. Note that you should interpret these CI with a grain of salt,
because they are not truly multivariate, but rather represent the CI on each coordinate
axis independently.

voff gam p <- bind cols(frame voff, voff gam p) |[>
# pick any Italian and Polish speaker, random effects have been removed
filter(speaker %inj c("itO1", "pl02")) |>
# Calculate 95/, CIs of X and Y
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mutate (

X lo =X - (1.96 * X _se),

X hi =X+ (1.96 * X _se),

Y lo=Y - (1.96 * Y _se),

Y hi =Y+ (1.96 * Y_se)
) >
# Separate column into individual variables, for plotting later
separate(vow_place_lang, c("vowel", "place", "language"))

Source: Article Notebook

Figure 7 and Figure 8 show the predicted tongue contours based on the voff_gam model,
without and with 95% CIs respectively. As mentioned earlier, there isn’t a straightfor-
ward way to obtain any statistical measure of the difference between the contours on
the multivariate plane, so we must be content with the figure.
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Figure 7. Predicted tongue contours based on a multivariate GAM. Uncertainty not
shown.

Source: Article Notebook
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Figure 8. Predicted tongue contours based on a multivariate GAM, with 95% Confidence
Intervals.

Source: Article Notebook

2.2. Emphaticness

The second case study is about consonant “emphaticness” in Lebanese Arabic. The
data is from Sakr (2025). [XXX TODO GEORGE description of the data, including
a brief explanation of the LebAr context]. The second case study is about consonant
“emphaticness” in Lebanese Arabic.

Lebanese Arabic is a variety of Arabic primarily spoken in Lebanon, where it is in
constant contact with a number of Indo-European languages (primarily English and
French, as vectors of education and business, see eg. Shaaban and Ghaith 1999), as well
as the written standard form of Arabic known as Modern Standard Arabic (MSA). The
relationship between Lebanese Arabic (LA) and MSA in Lebanon is one of diglossia
(see eg. Lian 2022), where LA is spoken in most contexts, but not written, and MSA is
the written variety, and therefore also primarily used for legal and official purposes.

Emphasis is a phonologically contrastive feature of Semitic languages. In most vari-
eties of Arabic, it is usually reported to be realised as pharyngealisation (Sakr 2023; J.
Al-Tamimi 2017; Zeroual, Esling, and Hoole 2011; Watson 2002) with some variation
depending on phonological context (Sakr 2025; F. Al-Tamimi and Heselwood 2011) or
on sociolinguistic factors (Khattab, Al-Tamimi, and Heselwood 2006). Older sources
instead report the secondary place of articulation as being the velum (see eg. Obrecht
1968; Nasr 1959) or the uvula (see eg. Bin-Mugbil 2006; Zawaydeh 1999; Ghazeli 1977).
Whatever the specifics of this secondary place of articulation, the literature (see among
others Sullivan 2017; El-Khaissi 2015; Elhij’a 2012; Alorifi 2008) additionally suggests
the occurrence of a loss of emphasis in Lebanese, or more generally Levantine or Western
dialects of Arabic, likely as a result of the contact with the Indo-European languages
mentioned above.

11
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It is against this background, and as part of efforts to document the precise place of
secondary articulation of emphasis in Lebanese Arabic, as well as to document whether
or not emphasis has, indeed, been lost in the variety, that the data used here (from Sakr
2025) was collected. It consists of UTI recordings, by 5 participants, of CVb stimuli. The
onset was either an emphatic or an unemphatic (‘plain’), voiced or voiceless, alveolar,
plosive or fricative /t, t, d, d, s, s, z, z/; when talking about a plain/emphatic pair, we
denote them /T, D, S, Z/. The nucleus was one of five vowel qualities (see Sakr 2019)
present in Lebanese, which we will denote with /A, E, I, O, U/ to signal that these
are neither to be taken as phonemes or exact phonetic realisations. The coda was the
voiced bilabial plosive /b/.

Each recording consisted of four stimuli in randomized order, covering forty syllables,
in five repetitions; for a total of 1000 recordings. The subset of the data used here is
from 35ms before consonant offset, defined as the burst for the plosives and as the end
of the frication noise for the fricatives.

Source: Article Notebook

Since the procedure to fit and plot MGAMSs is the same as the one presented in Sec-
tion 2.1, we won’t be showing the code in this section, but readers can find the code in
the Article Notebook, at https://stefanocoretta.github.io/mv__uti/index-preview.html.

Source: Article Notebook

Source: Article Notebook

Figure 9 shows the predicted tongue contours of emphatic and plain consonants, split
by following vowel. First, the following vowel exercises an appreciable amount of coar-
ticulation on the preceding consonant. The vowel-induced coarticulation seem to be
modulating how the emphatic vs plain distinction is implemented (or not): in the con-
text of the vowels /A, O, U/, emphatic consonants are produced with a retracted body
and root, indicating pharyngealisation. On the other hand, in the context of the front
vowels /E, I/, there is visibly less distinction between emphatic and plain consonants,
which is virtually absent in /E/. However, when plotting the predictions for the different
vocalic contexts and different speakers, the picture becomes more complex.
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Figure 9. Predicted tongue contours with 95% CIs from an MGAM of Lebanese Arabic
emphatic and plain coronal consonants.
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Source: Article Notebook

Source: Article Notebook

In Figure 10, predictions have been calculated for individual speakers (see Article Note-
book online, linked above, for the code). First, there is a good deal of individual variation:
some speakers show a clear differentiation of the tongue shape in emphatic and plain
consonants, while in other speakers the difference is less obvious. FAK produced em-
phatic and plain consonants with virtually the same tongue shape. Just to pick another
example, BAR velarised rather than pharyngealised the emphatic consonants followed
by /1/, while BAY pharyngealised them. Plotting predictions of individual speakers can
reveal idiosyncratic patterns which are not visible when plotting overall predictions.

emph
emphatic

-4 plain

-2101 -2101 -2101 -2101 -2101
X

Figure 10. Predicted tongue contours with 95% CIs from an MGAM of Lebanese Arabic
emphatic and plain coronal consonants split by speaker.

Source: Article Notebook

3. Multivariate Functional Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique. For an
introduction to PCA we recommend Kassambara (2017). Functional PCA (FPCA) is
an extension of PCA: while classical PCA works by finding common variance in a set
of variables (and by reducing the variables to Principal Components that explain that
common variance), FPCA is a PCA applied to a functional representation of varying
numerical variables (Gubian et al. 2019; Gubian, Pastétter, and Pouplier 2019; Gubian
2024): a typical example is time-series data, with a variable changing over time. The
trajectory of the time-varying variable is encoded into a function with a set of coefficients
and the values of those coefficients are submit to PCA. When more than one time-
varying variable is needed, this is where Multivariate FPCA (MFPCA) come in (Gubian

13
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2024).

MFPCA is an FPCA applied to two or more varying variables. Note that the variable
does not have to be time-varying. The variation can be on any linear variable: in the
case of DLC-tracked UTI data, the variation happens along the knot number. Look back
at Figure 4: the two varying variables are the X and Y coordinates, which are varying
along the DLC knots. As with MGAMs, it is these two varying trajectories that are
submitted to MFPCA.

3.1. VC coarticulation

We will apply Multivariate Functional Principal Component Analysis (MFPCA) to the
data introduced in Section 2.1. The following code has been adapted from Gubian
(2024). The packages below are needed to run MFPCA (except landmarkregUtils, they
are available on CRAN).

Source: Article Notebook

The format required to work through MFPCA is a “long” format with one column
containing the coordinate labels (z or y coordinate) and another with the coordinate
values. We can easily pivot the data with pivot_longer (). Note that we are using the
z-scored coordinate values (X_z and Y_z). If you are not unsure about what the code in
this section, it is always useful to inspect intermediate and final output.

Source: Article Notebook

In the second step, we create a multiFunData object: this is a special type of list object,
with the observations of the two coordinates (X_z and Y_z) as two matrices of dimension
N - 11, where N is the number of tongue contours and 11 is for the 11 knots returned
by DLC. Three columns in the data are used to create the multiFunData object: one
column with the id of each contour (in our data, frame_id), a time or series column
(knot) and the column with the coordinate values (value).

Source: Article Notebook

Once we have our multFunData object, we can use the MFPCA() function to compute
an MFPCA. In this tutorial we will compute the first two PCs, but you can compute
up to K — 1 PCs where K is the number of DLC knots in the data.

Source: Article Notebook

We can quickly calculate the proportion of explained variance of each PC with the
following code. PC1 and PC2 together explain almost 100% of the variance in our data.
The higher the variance explained, the better the variance patterns in the data are
captured.

[1] 0.7108713 0.2891287

Source: Article Notebook

The best way to assess the effect of the PC scores on the shape of the tongue contours
is to plot the predicted tongue contours based on a set of representative PC scores. In
order to be able to plot the predicted contours, we need to calculate them from the
MFPCA object. Gubian suggests plotting predicted curves at score intervals based on
fractions of the scores standard deviation. This is what the following code does.
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Source: Article Notebook

The created data frame pc_curves has the predicted values of the X and Y coordinates
along the knots. This is the same structure as Figure 4, with the knot number on the
z-axis and the coordinates on the y-axis. Of course, what we are after is the X/Y plot of
the tongue contours, rather than the knot/coordinate plot as needed to fit an MFPCA.
For the sake of clarity, we first plot the predicted curves for X and Y separately. Figure 11
shows these. The plot is composed of four panels: the top two are the predicted curves
along knot number for the Y coordinates (based on PC1 in the left panel and PC2 in the
right panel). Interpreting the effect of the PCs on the X and Y coordinates separately
allows one to observe vertical (Y coordinate) and horizontal (X coordinate) differences
in tongue position independently. However, note that the vector of muscle contractions
in the tongue are not simply along a vertical /horizontal axis (Honda 1996; Wrench 2024).
Looking at a full tongue contour (in an X/Y coordinates plot) will generally prove to
be more straightforward.
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Figure 11. Predicted curves along knot number for X and Y coordinates, as obtained
from an MFPCA.

Source: Article Notebook

In order to plot tongue contours in the X/Y coordinate system, we simply need to pivot
the data to a wider format.

Source: Article Notebook

Figure 12 plots the predicted contours based on the the PC scores (specifically, fractions
of the standard deviation of the PC scores). The z and y-axes correspond to the X
and Y coordinates of the tongue contour, with the effect of PC1 in the left panel
and the effect of PC2 in the right panel. A higher PC1 score (green lines in the left
panel) suggest a lowering of the tongue body/dorsum and raising of the tongue tip.
Since the data contains velar and coronal consonants, we take this to be capturing
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the velar/coronal place of articulation effect. A higher PC2 score (green lines in the
right panel) corresponds to an overall higher tongue position. Considering that the
back/central vowels /a, o, u/ are included in this data set, we take PC2 to be related
with the effect of vowel on the tongue shape at closure onset.
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Figure 12. Predicted tongue contours as obtained from an MFPCA.

Source: Article Notebook

Given the patterns in Figure 12, we can expect to see differences in PC2 scores based on
the vowel if there is VC coarticulation. We can obtain the PC scores of each observation
in the data with the following code.

Source: Article Notebook

Figure 13 plots PC scores by language (rows), consonant place (columns) and vowel
(colour). Both in Italian and Polish, we can observe a clear coarticulatory effect of /u/
on the production of coronal stops (and perhaps minor differences in /a/ vs /o/). On
the other hand, the effect of vowel in velar stops seems to be minimal, again in both
languages. This is not entirely surprising, since while coronal stops allow for adjustments
of (and coarticulatory effect on) the tongue body, velar stops do not since it is precisely
the tongue body/dorsum that is raised to produce the velar closure.
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Figure 13. PC1/PC2 scores by language, consonant place of articulation and vowel.

Source: Article Notebook

Once one has established which patterns each PC is capturing, PC scores can be sub-
mitted to further statistical modelling, like for example regression models where the
PC scores are outcome variables and several predictors are include to assess possible
differences in PC scores.

3.2. Emphaticness

In this section we will run an MFPCA analysis on the Lebanese Arabic data. Since the
procedure is the same as in the previous section, the code will not be shown here, but can
be viewed in the Article Notebook, at https://stefanocoretta.github.io/mv_uti/index-
preview.html.

Figure 14 illustrates the reconstructed tongue contours (taken from 35 ms before the CV
boundary) in Lebanese Arabic, based on the MFPCA. PC1 captures the low-back/high-
front diagonal movement. PC2, on the other hand, seems to be restricted to high/low
movement at the back of the oral cavity. Emphatic consonants, if produced with a
constricted pharynx (i.e. pharyngealised), should have a lower PC1. If on the other
hand they are produced with a raised tongue dorsum (i.e. velarised), they should have
a lower PC2 (lower PC scores are in purple in Figure 14).
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Figure 14. Predicted tongue contours of Lebanese Arabic coronal consonants as obtained
from an MFPCA.

Source: Article Notebook

Figure 15 plots the PC scores for each vowel, emphaticness and speaker combination.
Points are coloured based on emphaticness: emphatic in green and plain in orange. This
figure illustrates well how the PC scores can capture individual variation: some speak-
ers show clear separation of emphatic and plain tokens, while others do not. In most
cases, PC1 is doing the heavy lifting of distinguishing emphatic and plain: recall that
PC1 captures the front-high/back-low diagonal; a low PC1 indicates tongue dorsum
and root backing, in other words pharyngealisation. Indeed, PC1 tends to be lower in
emphatic tokens in several speakers, like Bar, Bay, Mro and Sak, especially with the
vowels /A, O, U/. On the other hand, Bar’s emphatic and plain tokens for vowels /E,
I/ do not show a PC1 difference, but rather a PC2 difference: PC2 captures tongue
dorsum/body raising, hence indicating velarisation. It is possible that in Bar’s produc-
tions of emphatic consonants followed by /E, I/ the distinction with plain is produced
by velarisation, compared to the pharyngealisation of emphatic consonants followed by
/A, O, U/. Velarisation, rather than pharyngealisation, in the /E, I/ contexts makes
sense given that the tongue root has to be front in the production of those vowels.
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Figure 15. PC1 and PC2 scores by vowel, consonant type and speaker.
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Figure 16 and Figure 17 illustrate one way to plot the PC scores individually for PC1
and PC2. We won’t include here a full description of the plots, since they should be
self-explanatory, but we flag to the reader that these type of plots can be helpful in
illustrating specific patterns in PC1 or PC2.
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Figure 16. PC1 scores of emphatic and plain consonants by speaker and vowel.
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Source: Article Notebook
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Figure 17. PC2 scores of emphatic and plain consonants by speaker and vowel.

Source: Article Notebook

Finally, it will usually be helpful to reconstruct the predicted tongue contours of specific
context. For example, we might be interested in showing the average tongue contours
for emphatic and plain consonant followed by each of the five vowels in the data. This
is shown in Figure 18. In order to obtain the reconstructed contours, we first need to
calculate mean PC scores for each vowel. This can be done through the following code.
We recommend to inspect the pc_scores_mean object.

pc_scores_mean <- pc_scores |[>
# Group by variables based on which we want to obtain mean values.
group_by(vowel, emph) |[>
# Sumarise data to obtain means
summarise (

PC1 = mean(PC1),
PC2 = mean(PC2),
.groups = '"drop"
) 1>
# Add "dimensions", i.e. X and Y coordinates
mutate (
dim = list(c(1, 2))
) 1>

# Unnes the dim column
unnest (dim)

Source: Article Notebook

The following code calculates the reconstructed tongue contours based on both PC1 and
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PC2. One could also calculate the reconstructed contours at factions of the standard
deviation of the scores if one wished so, like it was done above.

pc_curves_2 <- pc_scores_mean |>
group_by(dim, vowel, emph) |>
# We can now calculate the predicted contour with funData2longl() .
# reframe() is needed because the funData2longl() function returns a data frame
# the has more rows than the original.
reframe (
funData2longi(
mfpca$meanFunction[[dim]] +
# We add PC1
PC1 * mfpca$functions[[dim]] [1] +
# and we add PC2 as well
PC2 * mfpca$functions[[dim]] [2],

time = "knot", value = "value"
)
) >
# We relabel the dimensions
mutate(

dim = factor(dim, levels = c(2,1), labels = c('Y z', 'X z'))
) >

pivot_wider(names_from = dim, values_from = value)

Source: Article Notebook

Finally, Figure 18 plots the reconstructed contours. Based on this figure, we do find
pharyngealisation in emphatic consonants followed by /A, O, U/ on average, while
pharyngealisation is absent in the context of /E, I/.
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Figure 18. Reconstructed tongue contours based on PC1/PC2.
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Source: Article Notebook

4. Advantages and disadvantages

Both Multivariate GAMs and FPCA are a useful way to model DLC-tracked ultrasound
tongue imaging data. However, each possesses advantages and disadvantages.

Multivariate GAMs can model tongue contours in specific contexts and combinations
thereof, like different vowels, consonant, prosodic contexts and so on. The rather com-
plex model structure required to fit multivariate GAMs to tongue data comes at a
computational cost and interpretative cost. Computationally, multivariate GAMs can
take hours to estimate even the most simple models. Interpretationally, comparing dif-
ferent tongue contours quantitatively based on the output of a multivariate GAM is
non-trivial, given that the tongue contour is in fact a curve reconstructed from the
smooths of the X and Y coordinates along knot (in other words, the model does not
model tongue contours directly). Moreover, there is no straightforward way to use tra-
ditional methods to assess (frequentist) statistical significance. From a practical point
of view, a multivariate GAM ends up being a mathematically complex way of obtaining
a sort of average tongue contour.

Multivariate FPCA, on the other hand, are computationally efficient. Even with very
large data sets, the computation of Principal Components is relatively quick. Moreover,
the obtained PCs can be interpreted straightforwardly by plotting the effect of changing
the PC score on the reconstructed tongue contour (as we did for example in Figure 12).
One possible disadvantage of multivariate FPCA is that it is usually not known what
type of variation each obtained PC captures. This is illustrated in the two case studies
in Section 3. In the VC coarticulation data, PC1 corresponded to the coronal/velar
difference in consonants, while PC2 to the difference in vowel. In the emphaticness data,
PC1 captured the low-back /high-front diagonal movement, while PC2 to the high/low
movement at the back of the oral cavity. In other words, until one has run the MPFCA,
one does not know what PC will correspond to which axis of differences and whether
the PCs will capture relevant difference at all (it can happen that the variation one is
after is so minimal relative to other, more substantial cases of variation, that it will
not be captures at all). It is possible that qualitatively homogeneous data sets might
return PCs that have the same or very similar interpretation, but this has not been
systematically tested Honda (1996).

Another advantage of MFPCA is that, provided that the PCs have captured relevant
characteristics, the PCs can be submitted to further modelling using regression with the
inclusion of relevant predictors (like different categorical variables of interest). We have
not done so in this tutorial to keep the scope and length of the tutorial manageable,
but both case studies presented in Section 3 are amenable to such follow-up analysis.

Based on the advantages and disadvantages of each of multivariate GAMs and FPCA,
we suggest researchers to use MFPCA as the preferred and default approach to analyse
DLC-tracked tongue contour data and to resort to multivariate GAMs if MFPCA fails
to capture relevant variation.
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5. Conclusions

TBA
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