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Abstract

Phonetic research frequently involves analyzing numeric continuous outcome variables, such as durations,
frequencies, loudness, and ratios. Another commonly used outcome type is proportions, including measures
like the proportion of voicing during closure, gesture amplitude, and nasalance. Despite their bounded nature,
proportions are often modeled using Gaussian regression, largely due to the default settings of commonly
used statistical functions in R (e.g., lm() and lmer() from lme4). This practice persists in teaching and
research, despite the fact that Gaussian models assume unbounded continuous data and may poorly fit
proportion data. To address this issue, this tutorial introduces beta regression models, a more appropriate
statistical approach for analyzing proportions. The beta distribution provides a flexible framework for
modelling continuous data constrained between 0 and 1. The tutorial employs the brms package in R and
assumes familiarity with regression modeling but no prior knowledge of Bayesian statistics. The tutorial
includes two case studies illustrating the practical implementation of Bayesian beta regression models. Data
and code are available at https://github.com/stefanocoretta/beta-phon.
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1. Introduction

Phonetic research often involves numeric continuous outcome variables, like durations, frequencies, loudness
and ratios (Kluender et al., 1988; Johnson, 2003; Gick et al., 2013; Ladefoged and Johnson, 2014; Abramson
and Whalen, 2017; Roettger et al., 2018; Coretta et al., 2023; Rosen, 2005). Another commonly employed
type of outcome variable is data that is bounded between 0 and 1: for example, proportion of voicing during
closure (Davidson, 2016), vocal folds contact quotient (Herbst et al., 2017), gesture amplitude (Carignan,
2021), nasalance (Carignan, 2021), and data from slider answers where participants can indicate responses
for qualities.

Regression models (and extensions like generalised additive models) have become a de facto standard
for the statistical analysis of a variety of measures in phonetic research (Kirby and Sonderegger, 2018;
Politzer-Ahles and Piccinini, 2018; Tavakoli et al., 2024). However, there is a tendency for researchers to use
Gaussian distribution families (i.e. probability distributions for the outcome variable) for any measure that
is numeric, irrespective of whether the measure is unbounded, like in truly Gaussian variables, or bounded,
like in proportions. A possible reason is that the base R function for fitting regression models, lm(), and
the lme4 function used to fit regression models with varying terms, lmer() from lme4 (Bates et al., 2015),
both fit Gaussian regressions by default and the user does not have to specify the distribution family. This
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tacit default of using Gaussian models is also reflected in teaching practices, where significance test and
models using the Gaussian distribution are the first to be taught (Baayen, 2008; Winter, 2020), due to their
relative simplicity and the fact that regression models with other families are conceptual generalisations of
Gaussian regression models. Figure 1 shows how poorly a Gaussian regression model fits beta-distributed
data: the dark blue line is the density of data simulated to be distributed according to a beta distribution;
the light blue lines are predicted distributions as generated by a Gaussian model of the data. The predicted
Gaussian distributions over-predict values between 0.5 and 0.75 and under-predict values between 0.75 and
1. Furthermore, a Gaussian distribution predicts values above 1, which are not possible given the bounded
nature of the data. Moreover, the density peak (median) of the Gaussian distributions is lower than the
peak in the original data.
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Figure 1: Gaussian model fitted to beta-distributed data. The dark blue line is the density of the beta data, while the light
blue lines are simulated densities of the same data based on a Gaussian model.

While most researchers approach proportions with Gaussian regression models, proportion are not Gaus-
sian by nature, since they are continuous variables bounded between 0 and 1. Thus, regression models with
proportions as outcome variable should be fitted using a likelihood family that assumes such unit interval
data. A common and flexible distribution for this purpose is the beta distribution. Note that the beta
distribution supports variables in the interval [0, 1], i.e. excluding 0 and 1; variables in the interval (0,
1), including 0 and 1, can be modelled with zero and zero/one inflated beta distributions (see Section 2).
This tutorial introduces researchers to beta regression models in R using the package brms. Familiarity
with regression modelling in R with a package like lme4 is assumed, but no prior knowledge of Bayesian
statistics is necessary. The rest of the paper is structured as follows: Section 2 introduces the mathematical
underpinnings of the beta distribution, Section 3 provides the readers with a brief explanation and justi-
fication of Bayesian regression models, while Section 4 and Section 5 illustrate how to fit Bayesian beta
regression models with two case studies. The research compendium with data and code can be found at
https://github.com/stefanocoretta/beta-phon.

2. The beta distribution

The beta distribution is often considered as the distribution for the modelling of unit interval data, i.e. data
that are in the interval [0, 1] (Ferrari and Cribari-Neto, 2004; Cribari-Neto and Zeileis, 2010). It has been
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extensively studied theoretically (Krysicki, 1999; Gupta and Nadarajah, 2014; Espinheira et al., 2008) and
is used a baseline to compare other unit interval distributions against (Kieschnick and McCullough, 2003;
Bonat et al., 2013; López, 2013). Specifically in Bayesian regression models, it was shown to perform well
across a wide range of scenarios (Scholz and Bürkner, 2023, 2025), which is why we focus on the beta
distribution in this tutorial.

We use a common mean parametrisation for the beta distribution with mean parameter 𝜇, bounded between
0 and 1, and positive precision parameter 𝜙 that is roughly proportional to the inverse of the variance
Var(𝑦) = 𝜇 (1−𝜇)

𝜙+1 .2 That is, the larger 𝜙 the smaller the variance of the corresponding beta distribution.
While the mathematical details are not needed to understand the content of this tutorial, we still write
down the density below for reasons of completeness:

𝑝(𝑦 ∣ 𝜇, 𝜙) = 1
𝐵(𝜇 𝜙, (1 − 𝜇) 𝜙) 𝑦𝜇 𝜙−1 (1 − 𝑦)(1−𝜇) 𝜙−1,

where 𝐵 is the Beta function, a complex integral for whose numerical approximation efficient algorithms
exist in every programming language. See Figure 2 for an illustration of different beta distributions based
on various 𝜇 and 𝜙 values.

µ = 0.2 µ = 0.5 µ = 0.8

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0

5

10

15

20

x

D
en

si
ty

φ

2

5

10

Figure 2: Beta distributions for various 𝜇, 𝜙 values.

As mentioned earlier, the beta distribution handles data in the interval [0, 1], thus excluding 0 and 1. To
model (0, 1) data (including 0 and 1), the zero and zero/one inflated extensions of the beta distribution can
be used. Both of these are supported in the software used in this tutorial, but will not be treated here. We
refer readers to Heiss (2021).

3. Bayesian regression models

Bayesian regression models are being increasingly adopted within phonetics and language research more
broadly (Vasishth et al., 2018; Nalborczyk et al., 2019; Verissimo, 2021). Bayesian inference involves updating
of prior probability distributions in light of evidence from data, to produce posterior probability distributions.
In Bayesian regression models, model parameters are modelled as full probability distributions, rather than

2The 𝜇, 𝜙 parametrisation is equivalent to the 𝛼, 𝛽 parametrisation in that 𝛼 = 𝜇𝜙 and 𝛽 = (1 − 𝜇)𝜙. Using the former
allows brms to exploit the same programmatic features of other distributions parametrised with a location parameter.
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point estimates as in Null Hypothesis Significance Testing. Given the difficulty of analytical solutions of
model equations, Bayesian regressions rely on sampling algorithms to reconstruct the posterior distributions.
The statistical language Stan (Stan Development Team, 2017) employs efficient and robust Markov Chain
Monte Carlo algorithms for fitting a variety of models, and the R package brms allows R users to interface
with Stan from within R to fit Bayesian regression models (Bürkner, 2017, 2018, 2021).

The main practical advantage of Bayesian regression models over maximum-likelihood-based frequentist
regression models, like those fitted with the lme4 package (Bates et al., 2015), is that Bayesian regression
models don’t suffer from the convergence issues that models fitted in lme4 (Bates et al., 2015) and other
packages (Cribari-Neto and Zeileis, 2010) that fit frequentist models do, independent of sample size. A
second, long-term advantage is that Bayesian regression models allow researchers to statistically re-use
information from previous studies by specifying informative priors. While prior specification is one of the
main features of Bayesian inference, in this tutorial we will use the default priors as set by brms. These
are sensible priors estimated from the data that facilitate convergence but bear virtually no influence on
the estimated posteriors. Specifying priors requires a great deal of precise quantitative knowledge, which in
some areas of phonetics is difficult to determine, so that using the default priors provided by brms is, for
the purposes of this article (and initial analyses), an acceptable practice. For practical guidance on prior
specification and prior predictive checks, see Bockting et al. (2024), Mikkola et al. (2024), Stan Development
Team (2025) and McElreath (2020, p. 82-84).

The output of Bayesian regression models is (posterior) probability distributions for the model parameters,
through which researchers can quantify (un)certainty. When obtaining the summary of the posterior prob-
ability distributions, the mean and standard deviation of the posterior distribution, together with Bayesian
Credible Intervals are given for each parameter. The mean and standard deviation are commonly used
metrics, given that posteriors tend to be approximately Gaussian. An alternative are the median and the
median absolute deviation, which can be obtained by setting robust = TRUE in summary() (note that the
nature of the posterior distribution of the parameters is not related to the nature of the distribution family
chosen for the outcome, so while the outcome is modelled with a beta distribution, the posteriors of the
parameters follow a symmetric distribution due to the central limit theorem). Bayesian Credible Intervals
(CrIs) can be calculated from the posterior distributions at several probability levels (e.g. 95, 90, 80, 60%)
for a more complete view on estimated parameters. Bayesian CrIs indicate that, at a certain probability
level, the parameter’s estimate lies within that interval: so, for example, a 90% CrI [A, B] indicates that
there is a 90% probability that the estimate is between A and B. Different probability levels correspond to
different levels of confidence: the higher the probability the higher the confidence (always conditional on
data and model). Readers interested in a full and accessible exposition of Bayesian statistics are referred
to McElreath (2019). Shorter introductions can be found in Etz et al. (2018), Vasishth et al. (2018) and
Nalborczyk et al. (2019).

Beta regression models return coefficient estimates in log-odds, similarly to Bernoulli/binomial (aka logistic)
regression models. Log-odds correspond to the logarithm of the odds log ( 𝑝

1−𝑝 ). To convert log-odds into
probabilities (or into a variable in the [0, 1] interval), the inverse logit function is used 1

1+𝑒−𝑥 , where 𝑥 is
the log-odds value. Figure 3 illustrates the correspondence between log-odds and the [0, 1] values. In R,
the inverse logit can be obtained with the base R function plogis(), while the logit can be obtained with
the base R function qlogis(). Another relevant transformation of log-odds is exponentiation (with base
R exp()) which returns the corresponding odds-ratio: odds-ratios indicate the rate of change in the values
of the outcome variable relative to a baseline. An odds-ratio of 1 indicates no change, positive odds-ratios
indicate an increase, while negative odds-ratios correspond to a decrease. For example, if the odds-ratio of
the duration of /a/ vs the duration of /i/ is 1.2, this means that the duration of /a/ is grater than that
of /i/. Moreover, odds-ratios can be interpreted as percentage change: an odds-ratio of 1.2 corresponds to
a 20% increase relative to the baseline, an odds-ratio of 0.8 corresponds to a 20% decrease relative to the
baseline, while an odds-ratio of 1 means a 0% change (i.e. no change).
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logit(p) = log−odds
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Figure 3: Correspondence between log-odds and probabilities.

4. Case study 1: coarticulatory voicing within consonant closure

For the first case study, we will model the proportion of coarticulatory progressive voicing within the con-
sonant closure of voiceless stops. The measurements come from a data set of audio and electroglottographic
(EGG) recordings of 19 speakers of Northwestern Italian (Coretta, 2019, 2020). The participants read frame
sentences which included target words of the form /CVCo/, where C was either /k, t, p/ in all permutations
and V was either /i, e, a, o, u/ (two resulting words, /peto/ and /kako/ were excluded because they are
profanities), for a total of 43 target words. There were 4 different frame sentence: Scrivete X sul foglio
‘Write X on the sheet’, Ha detto X sei volte ‘She said X six times’, Sentivo X di nuovo ‘I heard X again’,
Ripete X da sempre ‘She’s been repeating X since ever’. There is a total of 172 trials per participant (3,268
grand total). The actual observation count is 2,419, after removing speech errors, EGG measurement errors,
and cases in which voicing ceased before the closure onset/after the closure offset of the second consonant
in the target word.

The proportion of voicing during the closure of the second consonant was calculated as the proportion
of contiguous voicing duration after closure onset to total duration of closure. The following code chunk
attaches the tidyverse packages (for reading and wrangling data, Wickham et al., 2019) and loads the
ita_egg tibble (data frame). The tibble is filtered so as to remove voicing proportions (voi_clo_prop) that
are smaller than 0 and greater than 1. The variables vowel (first vowel in the target word) and c2 (second
consonant in the target word) are converted to factors to specify the order of the levels. Table 1 shows the
first ten rows of the tibble (only relevant columns are included).
# attach tidyverse and set light theme for plots
library(tidyverse)
theme_set(theme_light())

# load tibble
load("data/coretta2018/ita_egg.rda")
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# filter and mutate data
ita_egg <- ita_egg |>

filter(voi_clo_prop > 0, voi_clo_prop < 1) |>
mutate(

vowel = factor(vowel, levels = c("i", "e", "a", "o", "u")),
c2 = factor(c2, levels = c("k", "t", "p"))

)

Table 1: First 10 rows of the data of voicing proportion within stop closure.

speaker word vowel c2 voi_clo_prop
it01 poto o t 0.0457950
it01 topo o p 0.3522513
it01 pato a t 0.1440749
it01 teto e t 0.3610916
it01 toto o t 0.2743519
it01 puco u k 0.1943984
it01 chipo i p 0.2227896
it01 peco e k 0.1835596
it01 poco o k 0.1771007
it01 poto o t 0.1525163

Figure 4 shows the raw voicing duration proportion values split by vowel /i, e, a, o, u/ and second consonant
/k, t, p/ in the /CVCo/ target words. The plot suggests that, on average, the voicing proportion is slightly
lower with /k/ than with /t, p/. Moreover, there is greater variability between vowels in /t, p/ than in /k/.
We will use a beta regression model to assess whether the place of articulation of the consonant affects the
proportion of coarticulatory progressive voicing, while averaging across vowels (of course, another question
that could be answered with the same model is if different vowels lead to different voicing proportions, but for
sake of space we restrict this tutorial to the former question). A general expectation is that the proportion
of progressive voicing should increase with fronter places of articulation (so from /k/ to /t/ to /p/) given
the aerodynamic constraints which obtain with vocal fold vibration during a fully occluded oral tract (van
den Berg, 1958; Rothenberg, 1967; Ohala, 2011).

We will use brms to fit a Bayesian beta regression (Bürkner, 2017). The model has voicing proportion as the
outcome variable and the following terms: an interaction between vowel (/i, e, a, o, u/) and second consonant
C2 (/k, t, p/), centred speech rate (number of syllables per second); as varying (aka random) terms, we
included by-speaker varying coefficients for the vowel/consonant interaction and for centred speech rate.3
The categorical predictors vowel and C2 are coded using indexing rather than the traditional R contrasts
(such as treatment or sum), as advocated in McElreath (2019, p 155, Ch 8): in R, this corresponds to
suppressing the model’s intercept with the 0 + syntax. One benefit of using indexing is that uncertainty is
equally distributed across all levels of categorical predictors, since priors apply on the mean of each level,
rather than on the difference of subsequent levels from the reference level. The latter scenario, which applies
in traditional contrasts, including treatment and sum, makes estimates of the last level in the predictor more
uncertain than the estimates of the other levels, given that the uncertainty of the intercept is added to the
uncertainty of the difference. As explained in Section 3, using the default priors calculated by brms is an

3While the terms “random effects, intercept and slopes” are commonly employed in applied statistical work in linguistics and
phonetics, we opt to use the conceptually more appropriate terminology proposed by Gelman (2005): varying terms, intercepts,
slopes, coefficients. Other common terms are multilevel and hierarchical terms. Note that with “varying terms” we refer
specifically to model terms with partial pooling in opposition to “constant terms” estimated with no pooling (McElreath, 2020,
p. 408). See Nalborczyk et al. (2019) for a detailed overview.
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Figure 4: Proportion of voicing during the closure of the second consonant in /CVCo/ words by vowel and the second consonant.

acceptable method in the absence of very specific quantitative expectation, given that the default priors are
weak enough to bear little effect on posteriors. Researchers should use their own judgement and expertise
in a case by case fashion.
# attach brms
library(brms)

# fit the model
# Takes 3 minutes on MacBook Pro 2020, M1
voi_prop_bm <- brm(

# model formula
voi_clo_prop ~

# constant terms
0 + vowel:c2 + speech_rate_c +
# varying terms
(0 + vowel:c2 + speech_rate_c | speaker),

# uses the beta family for the outcome
family = Beta,
data = ita_egg,
cores = 4,
seed = 3749,
file = "data/cache/voi_prop_bm"

)

The summary() function prints the full model summary. For conciseness, we will use the fixef() function
which prints the regression coefficients. Table 2 reports the output of fixef() as a table (we round all
values to the nearest 2 digits for clarity.). For each coefficient in the model, fixef() prints the name of
the coefficient, the mean estimate (i.e. the mean of the posterior distribution calculated from the MCMC
draws), the estimate error (i.e. the standard deviation of the posterior distribution) and the lower and
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upper limits of a Bayesian Credible interval (CrI) of the posterior distribution. Note that all values are
in log-odds, since the link function in beta regressions is the logistic function, like in binomial/Bernoulli
regressions. Here, we print an 80% CrI. There is nothing special about 95% CrI within Bayesian inference
and instead experts recommend to check and report a variety of CrIs. Obtaining CrIs at different probability
levels allows researchers to make more fine-grained inferential statements than the frequentist significance
dichotomy affords. For simplicity of exposition, we will use 80% CrIs in this case study but we strongly
recommend researchers to always obtain CrIs at different levels of probability and base their inferences on
all and not one in particular. To reiterate, in Bayesian inference, an 80% CrI indicates the range of values
within which the true estimate falls at 80% probability or confidence.
fixef(voi_prop_bm, prob = c(0.1, 0.9))

Table 2: Regression coefficients of a beta regression of voicing proportion (voi_prop_bm).

Estimate Est.Error Q10 Q90
speech_rate_c 0.08 0.06 0.01 0.15
voweli:c2k -0.91 0.14 -1.08 -0.74
vowele:c2k -1.08 0.11 -1.22 -0.94
vowela:c2k -0.99 0.12 -1.14 -0.84
vowelo:c2k -0.79 0.14 -0.96 -0.62
vowelu:c2k -1.00 0.16 -1.20 -0.80
voweli:c2t -0.66 0.11 -0.79 -0.53
vowele:c2t -0.84 0.14 -1.02 -0.66
vowela:c2t -1.43 0.13 -1.60 -1.26
vowelo:c2t -1.15 0.13 -1.31 -0.99
vowelu:c2t -0.68 0.12 -0.83 -0.54
voweli:c2p -0.68 0.11 -0.81 -0.54
vowele:c2p -0.88 0.15 -1.07 -0.68
vowela:c2p -1.14 0.13 -1.31 -0.98
vowelo:c2p -0.66 0.11 -0.80 -0.53
vowelu:c2p -0.44 0.12 -0.59 -0.28

From the summary, we see that speech rate (number of syllables per second) has a positive effect on
voicing proportion: the 80% CrI is between 0.01 and 0.15 log-odds [𝛽 = 0.08, SD = 0.06]. Log-odds can
be converted to odds-ratios by exponentiating the value: 0.01-0.15 log odds correspond to an odds-ratio of
1.01 to 1.16, or as percentages, to an increase of voicing of 1 to 16% for every increase of one syllable per
second. Since this is an 80% CrI, we can be 80% confident that the true effect of speech rate is between
1-16% increase of voicing proportion, conditional on the data and model. Note that transforming measures
this way is appropriate only with quantile-based measures (like CrIs) but not with moments like the mean
and standard deviation: to correctly get mean and SDs in the transformed scale, you must first extract the
posterior draws (see below), convert them and then take moments such as mean and SD (for a more detailed
explanation, see Bürkner, 2025, p. 101). In the avoidance of doubt, we will always transform the drawn
values first and then take summary measures.

Turning now to the coefficients for vowel and C2, given the indexing approach of coding these variables
the model summary and the output of fixef() reports the predictions in log-odds for each combination of
vowel and C2, rather than differences between levels. The posteriors of the coefficients for vowel and C2 are
the estimated 𝜇s of the beta distribution, since the beta distribution is parametrised with 𝜇 and 𝜙. We will
not discuss 𝜙, although the estimate of this parameter can be found in the summary of the model, under
“Further Distributional Parameters”.The CrIs of the vowel/C2 coefficients span all negative log-odds values:
these correspond to proportions that are lower than 0.5 (which is 0 in log-odds). This matches the general
trends in the raw data, which we plotted in Figure 4. Next, we will plot the predicted proportions of each
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vowel/C2 combination at mean speech rate (i.e. centred speech rate = 0) and then calculate the average
pair-wise difference in voicing proportion between /k, t, p/.

Before being able to plot the predictions, it’s important to get familiar with the so-called posterior draws.
Bayesian regression models are fitted using Markov Chain Monte Carlo (MCMC) methods, as briefly ex-
plained in Section 3. The brm() function runs four MCMC chains with 2000 iterations each by default.
These are sufficient in most cases. The first 1000 iterations of each chain are used for “warmup”, where the
MCMC algorithm is optimised to find the posterior probability. The second half of the iterations, 1000 per
chain, are used for sampling from the posterior probability. Each iteration returns a drawn value for each
parameter in the model. The list of values drawn during the Monte Carlo sampling are called the “posterior
draws”. Since four chains are run, a total of 4000 posterior values are generated. The posterior draws are
used for inference: we can plot them, summarise them, transform them and combine them in any way to
answer specific questions.

Posterior draws can be conveniently obtained with the as_draws_df() from brms. For the moment, we
will extract only the draws of the constant (aka fixed) regression coefficients (model variables starting with
b_). To check which coefficients are available in a model, use get_variables() from the tidybayes package
(Kay, 2019). as_draws_df() returns a tibble where each column contains the drawn values of a coefficient.
Table 3 shows the first ten rows and first five columns of the output of as_draws_df(). The probability
distribution of the drawn values of each coefficient is the posterior probability distribution of that coefficient.
Note that, due to the indexing coding of vowel and C2, all coefficient except b_speech_rate_c are drawn log-
odds values for each vowel/C2 combination (the drawn values for b_speech_rate_c are drawn differences in
log-odds values for each unit increase of speech rate). The drawn values are in log-odds, but we can convert
them to proportions with plogis() (we will do this when plotting below).
# extract only coefficient variables starting with "b_"
voi_prop_bm_draws <- as_draws_df(voi_prop_bm, variable = "^b_", regex = TRUE)

Table 3: First ten rows and 5 columns of the posterior draws for the model voi_prop_bm.

b_speech_rate_c b_voweli:c2k b_vowele:c2k b_vowela:c2k b_vowelo:c2k
0.1593890 -0.7213516 -1.046577 -1.1197185 -1.0191525
0.0351033 -0.7492306 -1.385450 -1.0633164 -0.8854320
0.1259352 -0.8472495 -0.975776 -1.0972735 -0.6440836
0.0640492 -0.7033469 -1.068626 -1.0475190 -0.8328252
0.0319081 -0.7659281 -1.177656 -0.9357499 -0.6955130
0.0729965 -0.8494392 -1.226692 -1.0635364 -0.7692243
0.1009609 -0.9546148 -1.072955 -1.1408255 -0.8566750
0.0735392 -1.0160675 -1.065025 -1.1736263 -0.8334884
0.0870061 -1.0436475 -1.069337 -1.2632061 -0.7941857
0.0923815 -1.2042168 -1.041238 -0.9158689 -0.6444492

We can now wrangle this tibble and plot the posterior distributions for each vowel/C2 combination. Table 4
shows the first ten rows.
voi_prop_bm_draws_long <- voi_prop_bm_draws |>

# drop b_speech_rate_c before pivoting
select(-b_speech_rate_c) |>
# pivot vowel:c2 columns
pivot_longer(`b_voweli:c2k`:`b_vowelu:c2p`, names_to = "coeff") |>
# separate "coeff" labels into type ("b"), vowel and c2
separate(coeff, into = c("type", "vowel", "c2"))
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Table 4: First ten rows of posterior draws from voi_prop_bm in long format.

.chain .iteration .draw type vowel c2 value
1 1 1 b voweli c2k -0.7213516
1 1 1 b vowele c2k -1.0465766
1 1 1 b vowela c2k -1.1197185
1 1 1 b vowelo c2k -1.0191525
1 1 1 b vowelu c2k -1.0523007
1 1 1 b voweli c2t -0.6248875
1 1 1 b vowele c2t -0.7951552
1 1 1 b vowela c2t -1.3999773
1 1 1 b vowelo c2t -1.0950180
1 1 1 b vowelu c2t -0.6682030

For plotting, we can use ggplot2 statistics layers from the ggdist package [Kay (2023); kay2024].
stat_halfeye() plots the density of the posterior probability (in grey), its median (point) and CrIs (lines).
Let’s use 60 and 80% CrIs and transform the log-odds values to proportions with plogis(). See Figure 5.
# attach ggdist package
library(ggdist)

voi_prop_bm_draws_long |>
mutate(

c2 = str_remove(c2, "c2"),
vowel = str_remove(vowel, "vowel")

) |>
ggplot(aes(plogis(value), vowel)) +
stat_halfeye(.width = c(0.6, 0.8)) +
facet_grid(rows = vars(c2)) +
labs(

caption = "The points are the medians and the two lines are 60 and 80% CrIs.",
x = "Voicing during closure (prop)",
y = "Vowel"

)
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Figure 5: Expected predictions of voicing proportion by vowel and consonant from voi_prop_bm.

What if we want to plot the average predicted voicing proportion for the three consonants /k, t, p/? We
can “marginalise” over vowel, i.e. take the mean across vowels within each consonant for each posterior draw,
and the posterior distribution of the resulting list of values is the predicted posterior distribution of voicing
proportion for each consonant, assuming an “average” vowel. See Figure 6 for the density of these posteriors.
For a detailed treatment of various approaches to marginalisation that apply to more complex cases like
those involving numeric predictors, see Arel-Bundock et al. (2024).
voi_prop_bm_draws_long_c2 <- voi_prop_bm_draws_long |>

# grouping by .draw and c2 ensures that averaging applies only within draw and c2
group_by(.draw, c2) |>
# calculate the mean value within draw/c2
summarise(

value_mean = mean(value), .groups = "drop"
)

voi_prop_bm_draws_long_c2 |>
mutate(

c2 = str_remove(c2, "c2")
) |>
ggplot(aes(plogis(value_mean), c2)) +
stat_halfeye(.width = c(0.6, 0.8)) +
labs(

caption = "The points are the medians and the two lines are 60 and 80% CrIs.",
x = "Voicing during closure (prop)",
y = "C2"

)
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Figure 6: Expected predictions of voicing proportion by consonant, averaged across vowels.

Based on the expected posterior distributions of the mean voicing proportion by consonant, /p/ has a
somewhat higher voicing proportion than /k/ and /t/. The real question is: how much higher? We can
quantify this by taking the difference of the drawn values for /p/ and those for /t, k/ (all averaged across
vowels). Since we want to compare /t, k/ with /p/, we should first average the average draws of /t, k/ and
then take the difference of the averaged /t, k/ draws and the draws of /p/. Table 5 shows the first ten rows
of the resulting data frame. The posterior distribution of the expected difference is shown in Figure 7.
voi_prop_bm_diff <- voi_prop_bm_draws_long_c2 |>

# pivot data to create one column per consonant with the mean drawn values,
# with one draw per raw
pivot_wider(names_from = c2, values_from = value_mean) |>
mutate(

# calculate the mean of /k/ and /t/, for each draw
c2tk = mean(c(c2k, c2t)),
# calculate the difference of /p/ and /t, k/
c2p_tk_diff = c2p - c2tk

)

Table 5: First 10 rows of expected difference of voicing proportion between /t, k/ and /p/.

.draw c2k c2p c2t c2tk c2p_tk_diff
1 -0.9918200 -0.7450832 -0.9166482 -0.9533426 0.2082595
2 -1.0240673 -0.7904348 -1.0322325 -0.9533426 0.1629079
3 -0.8954946 -0.6873228 -0.8904412 -0.9533426 0.2660199
4 -0.9442361 -0.8135191 -0.9095122 -0.9533426 0.1398235
5 -0.9278262 -0.7908457 -0.9200903 -0.9533426 0.1624970
6 -0.9825895 -0.7283054 -0.9262196 -0.9533426 0.2250372
7 -1.0482359 -0.8731592 -1.0841208 -0.9533426 0.0801835
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Table 5: First 10 rows of expected difference of voicing proportion between /t, k/ and /p/.

.draw c2k c2p c2t c2tk c2p_tk_diff
8 -1.0613713 -0.8751219 -1.0741555 -0.9533426 0.0782208
9 -1.0622522 -0.9739388 -1.0481834 -0.9533426 -0.0205962

10 -0.9293998 -0.8287910 -0.9526105 -0.9533426 0.1245517

voi_prop_bm_diff |>
ggplot(aes(c2p_tk_diff)) +
stat_halfeye(.width = c(0.6, 0.8, 0.9)) +
geom_vline(xintercept = 0) +
labs(

x = "Log-odds difference in /p/ vs /t/",
y = element_blank()

)
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Figure 7: Posterior distribution of the difference between the expected voicing proportion of /t, k/ vs /p/, averaged across
vowels.

Once we have the posterior difference, we can obtain CrIs of the difference using quantile2() from the
posterior package (Bürkner et al., 2024). Beware that the values of the difference are in log-odds! We can
convert these into odds-ratios with exp(). The output of the code below is shown in Table 6. Odds-ratios
indicate the ratio of the difference between A and B, so that 1 means no difference, values greater than
1 indicate an increase in A relative to B and values lower than 1 indicate a decrease in A relative to B.
Odds-ratios are useful when looking at differences that are in log-odds because while the relative magnitude
of the difference in proportion between two groups is the same independent of the baseline proportion, the
absolute magnitude of the difference depends on the baseline value. For example, an odds-ratio difference
of 1.25 would correspond to a proportion increase of about 3 percentage points if the baseline proportion
is 0.62 but it would correspond to a proportion increase of 5 percentage points if the baseline proportion is
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0.73 and 1 percentage point if the baseline is 0.99. Of course, in real research contexts it is still useful to
think about absolute magnitudes and their relevance from a conceptual and methodological perspective. In
this tutorial we just focus on odds-ratios for simplicity.
library(posterior)

voi_bm_quant <- voi_prop_bm_diff |>
mutate(c2p_tk_diff_ratio = exp(c2p_tk_diff)) |>
reframe(

# 90% CrI
q90 = quantile2(c2p_tk_diff_ratio, probs = c(0.05, 0.95)),
# 80% CrI
q80 = quantile2(c2p_tk_diff_ratio, probs = c(0.1, 0.9)),
# 60% CrI
q60 = quantile2(c2p_tk_diff_ratio, probs = c(0.2, 0.8)),

) |>
# round to 2 digits
mutate(across(everything(), ~round(.x, 2)))

Table 6: Upper and lower limits of 90, 80 and 60% Credible Intervals of the difference ratio of voicing proportion in /t, k/ vs
/p/.

q90 q80 q60
1.07 1.10 1.14
1.38 1.34 1.30

Based on the model and data, there is a 90% probability that the voicing proportion in /p/ is 1.07-1.38
times longer (or 7-38% increase) than in /t, k/. At 80% confidence, the change ratio is 1.10-1.34 (or 10-34%
increase) while at 60% confidence is 1.14-1.30 (14-30% increase). In other words we can be quite confident
that the voicing proportion in /p/ is greater than in /t, k/ and that the increase is less than 35%. The
brms package comes with a convenient function, conditional_effects(), to plot posterior means and CrIs
based on predictors in the model. In Figure 8, we plot the predicted proportion of voicing by consonant and
vowel.
ce <- conditional_effects(voi_prop_bm, "c2:vowel")
p <- plot(ce, plot = FALSE)[[1]]
p + labs(x = "C2", y = "Voicing during closure (prop)")
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Figure 8: Expected voicing proportion by consonant and vowel with 95% Credible Intervals.

Finally, the package marginaleffects (Arel-Bundock et al., 2025) has two other convenience functions that
return CrIs of comparisons across predictor levels (avg_comparisons()) and CrIs of posterior predictions
across predictor levels (avg_predictions). Both functions take the model and a list of variables as argu-
ments. Optionally, you can set the confidence level with the conf_level argument (here, we set it to 0.8,
or 80%). avg_comparisons() allows the user to specify the type of comparison for each variable: here we
set "pairwise" to calculate pairwise comparisons of each level of c2. The output of the two functions is
shown in Table 7 and Table 8.4

library(marginaleffects)

avg_comparisons(voi_prop_bm, variables = list(c2 = "pairwise"), conf_level = 0.8, type = "link")
avg_predictions(voi_prop_bm, variables = "vowel", conf_level = 0.8)

Table 7: Difference in expected voicing proportion by consonant, averaged across vowels, with 80% CrIs.

term contrast estimate conf.low conf.high
c2 p - k 0.218 0.178 0.256
c2 p - t 0.183 0.145 0.219
c2 t - k 0.035 -0.004 0.074

4For a discussion on multiple comparisons in Bayesian statistics, see Gelman et al. (2012). If multiple comparisons fixed
effects is performed and one worries about their joint frequentist error rates, one could, for example, increase the width of the
credible intervals for more conservative inference.
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Table 8: Expected voicing proportion by vowel, averaged across vowels, with 80% CrIs.

vowel estimate conf.low conf.high
i 0.331 0.325 0.338
e 0.300 0.293 0.307
a 0.245 0.238 0.252
o 0.305 0.298 0.312
u 0.348 0.341 0.354

5. Case study 2: coarticulatory vowel nasalisation

For the second case study we will use data from Carignan (2021). The study looked at properties of nasality
in German VNC sequences. Here, we will focus on the effect of C voicing (voiceless /t/ vs voiced /d/) on
the proportion of nasalisation within the vowel in the VNC sequence. Previous work on coarticulatory
nasalisation in English has suggested that vowels followed by an NC sequence where C is voiceless (NT)
should show earlier coarticulatory nasalisation than vowels followed by an NC sequence where C is voiced
(ND). This pattern has been suggested to be driven by the articulatory and acoustic incompatibility of
voicelessness and nasalisation, by which the velum opening gesture of the nasal consonant is pushed away
(i.e. earlier) when the consonant following the nasal is voiceless (Fowler, 2005; Beddor, 2009; Cho et al.,
2017; Carignan et al., 2015). Everything else being equal, a greater proportion of vowel nasalisation (from
the perspective of time) should be found in vowels followed by NT than in vowels followed by ND.

We will model the proportion of coarticulatory nasalisation in the German short vowels /i, e, a, o, u/
when followed by /nt/ or /nd/, using a Bayesian beta regression model. The proportion was calculated as
the proportion of the nasal interval to the duration of the vowel. The nasal interval was defined thus: the
interval between the time of peak velocity of velum opening to the offset of the vowel. We will use the results
of the regression model to answer the following questions:

1. Is the nasalisation proportion, on average across vowels, greater in voiceless NC sequences?
2. Is there individual speaker variation?

Table 9 shows the first ten rows of the data. The data contains the following columns:

• speaker indicates the speaker ID.

• label is the word label as given in the original data.

• vowel is the target vowel in the VNC sequence.

• NC is the NC sequence (voiceless /nt/ or voiced /nd/).

• voicing indicates the voicing of C.

• nas_prop is the proportion of coarticulatory nasalisation of the vowel.
nasal <- read_csv("data/carignan2021/nasal.csv")

Table 9: First ten rows of the nasal proportion data.

speaker label vowel NC voicing nas_prop
S03 b_U_nt@___N_B17/s u nt voiceless 0.3668820
S03 b_a_nd@___N_B19/s a nd voiced 0.1954858
S03 b_a_nt@___N_B15/s a nt voiceless 0.2786485
S03 f_I_nt@___N_B05/s i nt voiceless 0.7642259
S03 l_I_nd@___N_B06/s i nd voiced 0.0052949
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Table 9: First ten rows of the nasal proportion data.

speaker label vowel NC voicing nas_prop
S03 p_E_nt____N_B09/s e nt voiceless 0.3347331
S03 r_a_nt@___N_B06/s a nt voiceless 0.2431760
S03 v_I_nd@___N_B07/s i nd voiced 0.0247572
S03 v__I_nt_6___N_B15/s i nt voiceless 0.1350081
S03 z_E_nd@___N_B17/s e nd voiced 0.5378522
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Figure 9: Proportion of coarticulatory nasalisation during the vowel in VNC sequences in German, depending on C voicing.

Figure 9 shows the proportion of coarticulatory nasalisation in vowels followed by /nd/ (voiced) vs /nt/
(voiceless) sequences, for the short vowels /i, e, a, o, u/. We can see a pattern of higher nasalisation
proportion in vowels followed by /nt/, at least in the vowels /a, i, o/. For /e, u/, the distribution of
nasalisation proportion seems to be similar between the voiced and voiceless contexts.

Now onto modelling with a beta regression. Note that a full appropriate model would include further
predictors (both constant and varying), but for simplicity here we include only the following predictors:
voicing (voiced /nd/ vs voiceless /nt/), vowel (/i, e, a, o, u/), including an interaction between them. As
varying terms, we include a varying intercept by speaker and a by-speaker varying slope for voicing and
vowel in interaction. As with the model from the first case study, voicing and vowel are coded using indexing,
by suppressing the intercept with 0 +. Here’s the code of the model.
nas_prop_bm <- brm(

nas_prop ~ 0 + voicing:vowel + (0 + voicing:vowel | speaker),
data = nasal,
family = Beta,
cores = 4,
seed = 3749,
file = "data/cache/nas_prop_bm"

)
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Let’s inspect the output of fixef(), reported in Table 10.
fixef(nas_prop_bm, prob = c(0.1, 0.9))

Table 10: Regression coefficients of a beta regression of nasalisation proportion (nas_prop_bm).

Estimate Est.Error Q10 Q90
voicingvoiced:vowela -0.61 0.12 -0.77 -0.46
voicingvoiceless:vowela -0.08 0.09 -0.19 0.04
voicingvoiced:vowele -0.19 0.16 -0.38 0.01
voicingvoiceless:vowele -0.25 0.10 -0.38 -0.12
voicingvoiced:voweli -0.74 0.19 -0.98 -0.51
voicingvoiceless:voweli -0.12 0.18 -0.35 0.10
voicingvoiced:vowelo -0.34 0.16 -0.54 -0.14
voicingvoiceless:vowelo 0.25 0.15 0.05 0.44
voicingvoiced:vowelu -0.71 0.18 -0.94 -0.49
voicingvoiceless:vowelu -0.58 0.16 -0.78 -0.38

Negative log-odds indicate a proportion that is smaller than 50%, while positive log-odds a proportion
that is greater than 50%. Generally, the expected log-odd predictions in Table 10 are negative, indicating
an overall tendency for the nasalisation to take less than 50% of the duration of the vowel. Moreover,
the predictions are higher for voiceless NC sequences than for voiced NC sequences, indicating a greater
proportion of nasalisation in the former. However there is vowel-specific variation, and there doesn’t seem to
be much of a difference in nasalisation proportion in /e/ and /u/. Figure 10 shows the expected predictions
with conditional_effects(), which should make the interpretation of the predictions from Table 10 clearer.
ce <- conditional_effects(nas_prop_bm, "vowel:voicing")
p <- plot(ce, plot = FALSE)[[1]]
p +

labs(
y = "Proportion of nasality"

)
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Figure 10: Expected nasalisation proportion by vowel and voicing, with 95% CrIs.

Now that we fitted the model we can use the posterior draws to answer the two research questions (repeated
from above):

1. Is the nasalisation proportion, on average across vowels, greater in voiceless NC sequences?
2. Is there individual speaker variation?

To answer question 1, we can calculate the average difference in nasalisation proportion by first calculating
the average nasalisation across all vowels for voiced and voiceless sequences (see Table 11 for the output of
this step) and then take the difference of those, similarly to what we have done in the case study in Section 4.
# extract only coefficient variables starting with "b_"
nas_prop_bm_draws <- as_draws_df(nas_prop_bm, variable = "^b_", regex = TRUE)

nas_prop_bm_draws_long <- nas_prop_bm_draws |>
# pivot vowel:c2 columns
pivot_longer(`b_voicingvoiced:vowela`:`b_voicingvoiceless:vowelu`, names_to = "coeff") |>
# separate "coeff" labels into type ("b"), vowel and c2
separate(coeff, into = c("type", "voicing", "vowel"))

Table 11: First ten rows of posterior draws from nas_prop_bm in long format.

.chain .iteration .draw type voicing vowel value
1 1 1 b voicingvoiced vowela -0.4632870
1 1 1 b voicingvoiceless vowela -0.0943699
1 1 1 b voicingvoiced vowele -0.1546258
1 1 1 b voicingvoiceless vowele -0.2080810
1 1 1 b voicingvoiced voweli -0.4810383
1 1 1 b voicingvoiceless voweli -0.0529377
1 1 1 b voicingvoiced vowelo -0.3096219

19



Table 11: First ten rows of posterior draws from nas_prop_bm in long format.

.chain .iteration .draw type voicing vowel value
1 1 1 b voicingvoiceless vowelo 0.3212456
1 1 1 b voicingvoiced vowelu -0.6198312
1 1 1 b voicingvoiceless vowelu -0.3680900

Now let’s calculate the mean nasalisation proportion within each draw by voicing, and plot the resulting
posterior distributions. Note that, as discussed in Section 4, when working with log-odds it is important
to first do all necessary calculations in log-odds (here calculate the mean log-odds across vowels) and then
transform the calculated estimands to proportions/probabilities. The output of the following code is shown
in Table 12 and the density plot of the calculated draws is in Figure 11.
nas_prop_bm_draws_long_voicing <- nas_prop_bm_draws_long |>

# grouping by .draw and voicing ensures that averaging applies only within draw and voicing
group_by(.draw, voicing) |>
summarise(

# calculate the mean value within draw/voicing in log-odds
value_mean = mean(value),
# we can now transform log-odds to proportion with plogis()
value_mean_prop = plogis(value_mean),
.groups = "drop"

)

Table 12: Mean nasalisation proportion by draw and voicing, averaged across vowels (first 10 rows).

.draw voicing value_mean value_mean_prop
1 voicingvoiced -0.4056808 0.3999482
1 voicingvoiceless -0.0804466 0.4798992
2 voicingvoiced -0.3905744 0.4035790
2 voicingvoiceless -0.1227124 0.4693603
3 voicingvoiced -0.4436082 0.3908816
3 voicingvoiceless -0.1320190 0.4670431
4 voicingvoiced -0.4385607 0.3920840
4 voicingvoiceless -0.0981768 0.4754755
5 voicingvoiced -0.3827134 0.4054726
5 voicingvoiceless -0.2657250 0.4339569

nas_prop_bm_draws_long_voicing |>
mutate(

voicing = str_remove(voicing, "voicing")
) |>
ggplot(aes(value_mean_prop, voicing)) +
stat_halfeye(.width = c(0.6, 0.8)) +
labs(

x = "Nasalisation proportion"
)
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Figure 11: Expected nasalisation proportion by voicing, averaged across vowels.

The plot suggests an overall greater nasalisation proportion in voiceless NC sequences. Let’s quantify
how much greater it is, as we did in Section 4. We will use odds-ratios in this context as well, i.e. we
will convert log-odds to odds-ratios using the exp() (exponential) function (and as before we first calculate
the difference and then exponentiate the resulting values, after which we can take summary measures, like
means and quantile-based measures such as CrIs). Table 13 show the 90, 80 and 60% CrIs of the difference
ratio of nasalisation proportion in voiceless vs voiced NC sequences.
nas_prop_bm_diff <- nas_prop_bm_draws_long_voicing |>

# pivot data to create one column per voicing with the mean drawn values,
# with one draw per raw. we need to drop the value_mean_prop col
select(-value_mean_prop) |>
pivot_wider(names_from = voicing, values_from = value_mean) |>
mutate(

# calculate the difference of voiceless and voiced in log-odds
voicing_diff = voicingvoiceless - voicingvoiced,
# now transform with exp() to get the ratio difference
voicing_diff_ratio = exp(voicing_diff)

)

nas_prop_bm_diff_quant <- nas_prop_bm_diff |>
reframe(

# 90% CrI
q90 = quantile2(voicing_diff_ratio, probs = c(0.05, 0.95)),
# 80% CrI
q80 = quantile2(voicing_diff_ratio, probs = c(0.1, 0.9)),
# 60% CrI
q60 = quantile2(voicing_diff_ratio, probs = c(0.2, 0.8)),

) |>
mutate(across(everything(), ~round(.x, 2)))
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Table 13: Upper and lower limits of 90, 80 and 60% Credible Intervals of the difference ratio of nasalisation proportion in
vowels followed by voiced vs voiceless consonants.

q90 q80 q60
1.23 1.27 1.33
1.69 1.63 1.56

The CrIs of the ratio difference in nasalisation proportion in voiceless vs voiced NC sequences suggest an
increase of nasalisation in the voiceless NC sequences, with a 90% probability that the increase is between
23% and 69% of the proportion in voiced NC sequences.

Moving onto question 2: is there individual speaker variation? While in the recent tradition of linguistic
research, varying (aka random) effects are used to control for differences across participants, it has been
proposed to use the estimates of the varying coefficients to investigate individual differences (Tamminga
et al., 2016). We will use the spread_draws() function from tidybayes (Kay, 2019) to extract the draws
of the varying terms (in brms these are the coefficients that start with r_). There is quite a few steps of
processing to get from the raw draws to the estimand we need: while we have commented the following code,
we encourage readers to test each line sequentially and inspect the intermediate output to fully understand
the process. We assume that readers are familiar enough with models with varying terms (aka random
effects, mixed-effects, hierarchical, multilevel, nested models). What readers should note is that to obtain
the expected predictions of nasalisation proportion for each speaker, the constant terms and the varying
terms should be added (since the varying terms indicate the deviation of each speaker from the overall
estimate).
library(tidybayes)

nas_prop_r <- nas_prop_bm |>
# extract draws from model, only `r_speaker` varying terms
spread_draws(r_speaker[speaker,voicingvowel]) |>
# separate the column voicingvowel to two columns
separate(voicingvowel, c("voicing", "vowel")) |>
# join the draws with the `b_` terms
left_join(y = nas_prop_bm_draws_long) |>
# get the expected log-odd value of each speaker, in each draw
# this is the sum of the `value` from the b_ terms and the value from the
# r_speaker term.
mutate(r_speaker_value = value + r_speaker) |>
# group the data for summarise
group_by(.draw, speaker, voicing) |>
# get mean expected log-odds by draw, speaker and voicing (averaging across vowel)
summarise(r_speaker_value_mean = mean(r_speaker_value)) |>
# make the data wider: two columns, one for voiced and one for voiceless
pivot_wider(names_from = voicing, values_from = r_speaker_value_mean) |>
# finally, calculate the difference in expected log-odds of voiceless and voiced
mutate(voicing_diff = voicingvoiceless - voicingvoiced)

Figure 12 plots the posterior distributions of the expected log-odd difference of coarticulatory nasalisation
in voiceless vs voiced NC sequences (x-axis), for each speaker in the data (y-axis), as predicted by the
model. The red solid vertical line indicates the constant (overall) expected log-odd difference based on the
(constant) b_ terms. The black dashed vertical line marks log-difference 0 (i.e., no difference in proportion
of nasalisation between voiceless and voiced NC).
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nas_prop_r |>
ggplot(aes(voicing_diff, reorder(speaker, voicing_diff))) +
stat_halfeye() +
geom_vline(xintercept = mean(nas_prop_bm_diff$voicing_diff), colour = "red") +
geom_vline(xintercept = 0, linetype = "dashed") +
lims(x = c(-1, 1.5)) +
labs(

x = "Log-odds difference between voiceless vs voiced NC sequences",
y = "Speaker"

)
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Figure 12: Expected log-odd difference of coarticulatory nasalisation in voiceless vs voiced NC sequences for each speaker.
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There is a lot of uncertainty within and between speakers: while the distributions of most speakers are
located in the positive range, some expected distributions (see last 5 speakers at the bottom of figure) do
substantially span both negative and positive values. In other words, while most speakers are more likely to
have a larger nasalisation proportion in voiceless NC sequences, a few might in fact have the opposite pattern.
Even among those speakers that do have a more robust positive difference, there is a lot of uncertainty as
to the magnitude of the difference.

6. Conclusion

In this tutorial we have presented two case studies where the outcome variable is a beta variable, i.e. a
numeric continuous variable bounded between 0 and 1. We have shown how to fit Bayesian beta regressions
to coarticulatory progressive voicing in voiceless stops in Italian in Section 4 and coarticulatory regressive
nasalisation in vowels in German in Section 5. While this tutorial alone will not be sufficient to be able to
independently run full Bayesian analyses, it will serve as a first introduction for readers to jump start their
learning.
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